MegaPower, grootschalige energiewinning uit de natuur (De Ingenieur, nr. 20, 6 december 1995)

Spread the love

 

MegaPower_ill

 

Hier de PDF van het artikel in De Ingenieur: Megapower1995-2016

En hier onder twee websteks waar je er nog wat over vindt:

http://www.solar-tower.org.uk/megapowertower.php?PHPSESSID=5e87907ea6cf285f917966588c1c7c1f

http://www.lgwkater.nl/energie/megapower/megapower.htm

GESLOTEN SYSTEEM VOOR OPWEKKING VAN ENERGIE + BENUTTEN VAN TEMPERATUURVERSCHILLEN IN ATMOSFEER + VOLGENS NLR IS CONSTRUCTIE TECHNISCH MOGELIJK

 

MegaPower, grootschalige energiewinning uit de natuur

 

Toren van 5 km in Noordzee voor opwekken energie

 

Het principe van witte steenkool kan een zeer grootschalige toepassing krijgen. Plaats een gigantische toren in zee, laat gas via een pijp opstijgen tot 5 km hoogte, waar het condenseert en als vloeistof terugloopt tot zeeniveau, waar het door een turbine wordt omgezet in elektrisch vermogen. Onmogelijk? Nee, eerste studies rechtvaardigen nader onderzoek.

– Ing. R.M. van Ginkel –

– Frank Hoos –

– Ir. R.M. Krom –

– Drs.ir. P. van Summeren –

 

Ing. Van Ginkel en ir. Krom zijn werkzaam bij de Hoogovens Groep BV, Frank Hoos, bedenker van het MegaPower-idee, is werkzaam bij Seatec BV en drs.ir. Van Summeren is free-lance projectleider. Dit haalbaarheidsproject wordt gesteund door Novem. Ook Linde heeft aan het project deelgenomen.

 

 

Onder de naam MegaPower wordt sinds een jaar gewerkt aan een haalbaarheidsstu­die voor een grootschalig vermogensopwekkings‑ en conversiesysteem. Het voorstellingsvermogen moet hiervoor haast even groot zijn als het installatievermo­gen: 7000 MW in een installatie van tussen de 4 km en 7,5 km hoog­te. Het principe is dat van een gesloten systeem, waarbij een vloeistof verdampt op zeeniveau en op zeer grote hoogte bij de daar heersende lage temperatuur condenseert en terugge­leid wordt naar zeeniveau onder opwekking van vermogen. Het principe is vergelijkbaar met vermogensopwekking uit witte steen­kool: water verdampt, stijgt op, beregent de bergen en in de afdaling naar de zee worden waterkrachtcentrales ingezet voor het genereren van vermogen. De eerste studies tonen aan dat het project zowel fysisch als bouwtechnisch haalbaar kan zijn.

In het jaar 2050 naderen de gas‑ en olievoorraden hun einde, terwijl de wereldwijde energiebehoefte blijft stijgen. Er ontstaat dus behoefte aan grootschalig vermogen met andere bronnen dan gas en olie. Steenkool vormt op de lange termijn geen optie, want gezien het laatste rapport van de VN is wel vast komen te staan dat de klimaat­verandering daadwerkelijk in gang is gezet en dat CO2 daarin een voorname rol speelt. Dit noodzaakt te zoeken naar andere en betere oplossingen.

Met MegaPower komt een zeer milieuvriendelijke oplossing in beeld zonder enige CO2-produktie. Uitganspunt voor MegaPower is dat de temperatuur op grote hoogte (5000…8000 m) aanzien­lijk lager is dan op zeeniveau. Om hiervan gebruik te maken in een gesloten systeem zijn zeer grote installaties nodig, waarbij allerlei uitdagingen in de realisatie ervan opdoemen: de constructieve haalbaarheid, de thermodynamische voorwaar­den en de uitwerkingen daarvan.

Het fysische principe van een dergelijk geslo­ten systeem wordt verduidelijkt in afbeelding 1. Het systeem is in de Noordzee ge­dacht. Het bestaat uit een verdamper op zeeniveau, een stijgpijp voor het gas, een condensor op 5000 m hoogte, een pijp waardoor de vloeistof terugstroomt en een turbine op zeeniveau. De temperatuur op 5000 m hoogte is gebaseerd op de Nasa-standaard die aangeeft hoe de temperatuur met de hoogte varieert voor een standaardatmosfeer. De temperatuur van het zeewater komt overeen met de temperatuur van de Noord­zee in juni. De relatief hoge temperatuur is gunstig voor de verdamping van het medium. Het vloeibare medium wordt in de verdam­per een gas, stijgt op totdat het in de condensor komt, waar het condenseert. Daarna valt het terug tot op zeeniveau. De potentiële energie van de vloeistof in de condensor wordt in de turbine omgezet in elektrisch vermogen.

 

Rekenmodel

Om überhaupt berekeningen te kunnen uitvoeren moet het temperatuurverloop op grote hoogte en op zeeniveau bekend zijn. Aan het KNMI zijn derhalve gegevens gevraagd over het weer boven de Noordzee. Omdat het weer boven De Bilt niet signifi­cant verschilt van dat boven de Noordzee, zijn de weerdata van het jaar 1986 als uitgangspunt genomen. Deze zijn aangevuld met data van zeewatertemperaturen uit internationale klimaatatlas­sen. De data van het KNMI geven de hoogte van een drukniveau, de bijbehorende temperatuur en wind (in richting en snelheid).

De zeewatertemperaturen zijn af te lezen uit afbeelding 2. Dit tempe­ratuurverloop is een gemiddelde over tien jaar. Aanvullende gegevens van een bepaald meetpunt, de zeewatertempera­tuur bij Noordwijk in 1986, zijn in overeenstemming met die in deze afbeelding.

De temperatuur op 5500 m wordt weergegeven in afbeel­ding 3. Daarin is duidelijk te zien dat grote dagelijkse afwijkingen van de Nasa-standaard optreden.

In het MegaPower-project wordt uitgegaan van de meest ongunstige situatie. Hoe hoger de temperatuur is op 5500 m, des te slech­ter dat is voor conden­satie. In afbeelding 3 wordt door een ge­trokken lijn een ongunstig verloop aangegeven.

MegaPower heeft een rekenmodel ontwikkeld waarin het gewenste vermogen, de eigenschappen van de damp, de temperaturen op zeeniveau en op 5000 m hoogte zijn opgenomen. Dit model is gebaseerd op de aanname dat gedurende het transport van beneden naar boven geen warmte met de omge­ving wordt uitgewisseld. In het model is het verloop van de druk van een gas met de hoogte in een zwaartekrachtveld in rekening gebracht.

Bij uitwerking van dit model voor butaan, een gas dat ver­dampt bij ‑0,5 °C en dat een geringe verdampingswarmte heeft, blijkt dat voor een pijp met een doorsnede van onge­veer 50 m (of een bunde­l pijpen met in totaal een equivalent inwendig oppervlak) en 5000 m leng­te, een elektrisch vermogen van 7000 MW beschikbaar kan komen. De butaandamp stijgt op van het zeeniveau met een snelheid van ongeveer 50 m/s en komt op 5000 m hoogte aan met 20 m/s.

Uit de eerste berekingen bleek dat zuiver butaan niet kan voldoen, omdat er geen condensatie optreedt bij gestelde omgevingstemperaturen. Er zijn aan het butaan derhalve additieven toegevoegd. Deze condenseren tijdens het transport en geven hun warmte af aan het butaan. Daardoor komt het butaan met hogere druk dan voorheen aan bij de condensor en is condensa­tie mogelijk.

Door het geringe temperatuurverschil met de omgeving worden zowel de verdamper als de condensor buitenspo­rig groot. Bovendien betekenden de gegevens van het KNMI voor het MegaPower-project dat een systeem met butaan als medium vele maanden per jaar niet zou kunnen werken. Dit was aanleiding tot het zoeken van andere media en andersoortige systemen.

 

Medium

Het ontwikkelde rekenmodel biedt de mogelijkheid ook andere media in te voeren. Uit de eerste ervaringen was duidelijk geworden dat de tempe­ratuurniveaus de beperkende factoren waren, en niet zozeer de constructie. Daarom is een aantal stoffen onderzocht op hun mogelijke toepasbaarheid.

De minimaal vereiste temperatuur voor de verdamper moet altijd lager zijn dan de minimum zeewatertemperatuur van 4 °C (in de winter). Deze minimale temperatuur is bovendien afhan­kelijk van de con­struc­tie. In het onderzoek is de minima­le temperatuur van de verdamper op 0 °C gelegd. Voor de condensor geldt een soortgelijke beschouwing. Daar is de condensortemperatuur 6 °C hoger genomen dan de omringende lucht.

In de zomer is de temperatuur op 5000 m het hoogst en het temperatuur­verschil met het zeewater het klei­nst. Derhalve ligt bij die situatie de strengste systeem­eis. Daarnaast zijn er uit over­wegingen van stabiliteit en sterkte van de constructie nog eisen voor de drukken die mogen optre­den in het systeem. Het drukverschil met de omgeving mag niet te groot zijn en zeker niet lager dan de omgevingsdruk.

Een eerste keuze van mogelijke materialen leverde zeventien potentië­le kandidaten op. Ook de invloed van addi­tieven op deze materialen is onderzocht. Uit het reken­model blijkt dat met voornoem­de systeemeisen slechts drie potentiële materia­len over­blijven. Na invoering van andere voorwaarden zoals vrije convectie van de lucht in de condensor bleef alleen NH3 als medium over. Alhoewel het systeem binnen de gestelde temperatuurgren­zen functioneert, worden de con­densor en verdamper door gerin­ge temperatuurver­schillen en grote verdampingswarmte van NH3 relatief erg groot. Er zijn nog andere voorstellen gedaan, maar die vragen nog nadere uitwerking.

 

MegaPower-toren

Er is aan het NLR opdracht gegeven na te gaan of een dergelijke constructie technisch gerealiseerd kan worden. De Mega­Power-toren wordt getuid vanuit drie punten op zeeniveau. Er zijn twee versies (afbeelding 4, 5 en 6). Beide versies zijn opgebouwd uit modules die een kern van kunststof hebben met aan beide zijden aluminium. Enerzijds wordt de massa van de toren hierdoor beperkt, ander­zijds wordt de stijfheid groter. Bovendien is de protec­tie van belang, inwen­dig naar de gebruikte media, uitwendig naar meteorologische invloeden. In het MegaPower-project zijn dikten van 250 mm gebruikt.

In versie I zijn er om de 1200 m drijflichamen met water­stof. Er zijn dan vier drijflichamen die een elliptische vorm hebben. De inhoud van deze lichamen varieert met de hoogte. Beneden is de opwaartse kracht groot, dus kan de inhoud relatief klein zijn. Boven is de atmosferi­sche druk klein en moet het drijflichaam relatief een grotere inhoud hebben. Gedacht wordt aan langsdoorsneden van 360 m tot 900 m.

In versie II is het drijfvermogen geïntegreerd in de pijp. Deze wordt daardoor twee keer zo breed op zeeniveau. Ook hier speelt de atmosferische druk op grote hoogten een rol. Daardoor neemt de doorsnede toe tot 165 m op ongeveer 5000 m hoogte.

Het blijkt dat beide versies constructief mogelijk zijn. Bij een flinke storm is de statische deflectie bovenaan de pijp bij versie I (met vier drijflichamen) 344 m, bij de geïntegreerde versie slechts 57 m. Dat is voor beide ver­sies verras­send weinig. Nog meer indruk echter maakte het dynamische gedrag van beide versies. Windstoten van sinusvorm en beperkte duur werden aan de beide versies gegeven. Indien een windstoot op 4500 m wordt gegeven, is de deflectie maximaal 20 m respectievelijk 1 m.

De natrilling van beide ver­sies was ver­schil­lend. De dunne mast heeft veel eigenfre­quenties voor buigen onder de 0,1 Hz, terwijl de gedistribueerde versie begint bij 10 Hz. De reden voor deze kleine uitwijkingen moet gezocht worden in het enorme gewicht van de condensor. Deze functio­neert als stabilisator voor de pijp eronder.

Ook de tuidraden zijn technisch interessant. Zonder de toe­passing van nieuwe materialen zal het niet mogelijk zijn de toren te tuien. Nu blijkt dat doorsneden van 0,2 m2 van een modern materi­aal de spannin­gen kunnen opvangen, die ont­staan bij stormen en windsto­ten. De mechanische constructie is derhalve technisch moge­lijk.

De manier waarop de pijp opge­bouwd moet worden ligt daarmee nog niet vast. Binnen het MegaPower-pro­ject is een aantal ideeën bedacht om een pijp van een derge­lijke lengte op te bouwen. Uit verder onderzoek van het NLR blijkt dat con­structies van nog grotere dimensies technisch mogelijk zijn. Dit opent nieuwe wegen voor andere voorstellen.

Milieutechni­sche aspec­ten zijn voor MegaPower van groot belang. Men kan zich voor­stellen dat een puntvormige vermogens­winning zich heel anders gedraagt in het milieu dan een vermo­genswinning die over een groot oppervlak is verdeeld. Hiervoor zou een model ontwikkeld moeten worden voor zowel de condensor op grote hoogte als de verdamper in de zee. Vanwege de beperk­te duur en mogelijkhe­den van de huidige voorstudie kon alleen de haal­baarheid naar constructie en thermodynamische opzet bekeken worden.

 

Ten slotte

Door de opmerkelijke resultaten van de voorberei­dende haalbaarheidsstudie moet er een uitgebreid voor­ontwerp komen waarin alle aspecten uitge­werkt, geëvalu­eerd en afgewogen worden. Er zijn nog veel onuitgewerk­te mogelijkheden. De koppeling tussen techniek en techno­logie moet met grote harmonie tot stand worden gebracht. Voorbeelden daarvan geeft de natuur in grote diversi­tei­ten.

Het idee van MegaPower komt vanuit bewo­genheid met de natuur en moet daarom een eerlijke kans krij­gen. Zou het niet prachtig zijn als op economische verant­woorde wijze door middel van dit ‘luchtkasteel’ op grote schaal energie uit de natuur gewon­nen kan worden?

 

 

 

 

(BIJSCHRIFTEN)

(CREDIT BIJ DIA)

(Illustratie: Hans Pihl)

 

Afb. 1 Butaan/NH3-procescyclus; de vloeistof wordt door het zeewater verdampt en condenseert op grote hoogte; de druk en het debied van de vloeistofkolom worden in energie omgezet.

 

Afb. 2

 

Afb. 3

 

(VOLGENDE DRIE AFBEELDINGEN BIJ ELKAAR PLAATSEN)

Afb. 4

 

Afb. 5 Separate waterstof drijflichamen.

 

Afb. 6 Drijfvermogen geïntegreerd in de pijp.