Categorie archieven: Artikelen

Klimaatdebat mmv ministerie VROM bij KIVI, 1996 met prof. dr. Jan Kommandeur, prof. dr. ir. Pier Vellinga, dr. Frits Bottcher e.v.a.

 

klimaatdebat1996_1

Hier klikken voor de PDF:    klimaatdebatComb

HET WORDT ENKELE GRADEN WARMER + NEDERLAND KAN DE GEVOLGEN AAN + BEDREIGING VOOR KLEINE EILANDSTATEN + MAATREGELEN HEBBEN PAS OVER 10…20 JAAR EFFECT + KLIMAATVERANDERING DUURT 50..­.200 JAAR + GEEN GROTE STORMEN + GEEN AMERS­FOORT AAN ZEE

 

Broeikastheorie kent veel meer onzekerheden dan zekerheden

 

Over geloof en weten in het CO2-debat

 

De Klimaatnota van de regering, die deze maand verschijnt, en de publikatie van het 1995-rapport van de IPCC (the Inter­go­vern­mental Panel on Climate Change) hebben de kwestie van het broeikaseffect weer aan de orde ge­steld. Het valt daarbij op dat maar weinig Neder­landsta­lige litera­tuur be­schik­baar is, waarin duidelijk wordt uiteen­gezet wat het broeikasef­fect nu eigen­lijk is. Dat maakt het moeilijk om tot een afweging te komen. Voor een beter geïnformeerde me­ning­vor­ming moeten we feiten scheiden van aannamen en veron­derstellingen.

– Prof. dr. Jan Kommandeur –

 

De auteur is emeritus hoogleraar fysische scheikunde van de Rijks Universiteit Groningen.

 

Hoe komt de Aarde aan zijn temperatuur? Onze planeet is een door vacuüm zeer goed geïsoleerde bol die vrijwel alleen door de Zon wordt verwarmd. Hoe groot is het vermogen dat op de Aarde wordt ingestraald? Als eenheid nemen we de hoeveelheid ener­gie die per seconde door een loodrechte denkbeeldige kolom dampkring met een doorsnede van één vierkan­te meter vloeit: de fluxdicht­heid (S). De hoeveelheid zonne-energie die zo de Aarde bereikt, is S = 1368 watt per m2.

 

De blote Aarde

De Aarde presen­teert aan het zonlicht een opper­vlak­te van πR2, waarin R de straal van Aarde plus de atmosfeer is. Het door de Aarde ontvangen vermo­gen van de Zon is dus πR2S. De totale opper­vlakte van de Aarde is 4πR2. De over tijd en ruimte gemid­delde flux aan de rand van de atmosfeer is dus ¼S = 342 Wm-2. Van deze inkomen­de stra­ling wordt 31 %, dat is 106 Wm-2, door het aardsys­teem gereflec­teerd en dus wordt er gemid­deld 236 Wm-2 aan zonnestra­ling door Aarde en atmosfeer geabsor­beerd.

In de stationaire toestand, als de tempera­tuur van de Aarde constant blijft, moet ook gemiddeld 236 Wm-2 aan infra­rode (IR) straling (‘warmte’) de Aarde verlaten. Daardoor heeft de Aarde een eindige temperatuur. Die kunnen we bereke­nen door de Aarde op te vatten als een bron van infrarode straling met een spectrum dat wordt gege­ven door de Wet van Planck. Door nu de energieën bij alle golflengten bij elkaar op te tellen, krij­gen we de wet van Stefan-Boltzmann: W = σT4, waarbij σ de stra­lings­con­stante (5,67032 x 10-8 Wm-2) is, T de absolute tempe­ra­tuur en W het uit­gezon­den vermogen zijn. Eenvoudig invullen levert voor W = 236 Wm-2 een tempe­ratuur van 254 K. Van grote afstand ziet de Aarde er dus uit als een bol met een tempera­tuur van 254 K ofwel -19 °C. Al deze waarden zijn nauw­keurig tot op één of twee eenheden, reden waarom men ook wel -18 °C als ‘stralings­tempera­tuur’ ziet.

Ruwweg wordt onze bereke­ning beves­tigd door metingen van de temperature­n op de Maan, die immers ‘bloot’ is.

 

 

De aangeklede Aarde

Gelukkig is -19 °C niet de gemiddelde temperatuur waarbij wij moeten leven. Want er is meer aan de hand dan het stralings­evenwicht. Er is namelijk het broeikas­effect. Dat de gemid­del­de temperatuur op Aarde reeds jaren ongeveer 15 °C is, dus 34 graden hoger dan de ‘stralingstemperatuur’, is aan dat effect te danken.

Wat is het nu precies, dat broeikasef­fect? Daarvoor moeten wij eerst de samenstel­ling en de temperatuur­verde­ling van de atmosfeer bekijken.

De atmosfeer bestaat ruwweg voor 4/5 deel uit stikstof (N2), 1/5 uit zuurstof (O2) en 1 % uit het edelgas argon. Daarnaast bevat de dampkring zogenoemde broeikasgas­sen waaronder water (H2O), het verbran­dingsgas (ook wij ademen het uit) ­ko­olstofdi­oxide (CO2), methaan (CH4), lachgas (N2O) en ozon (O3). Deze broeikas­gas­sen hebben de eigen­schap in hun molecu­laire tril­lingen infrarood licht te absorbe­ren omdat ze asymmetrisch zijn; ze bestaan uit verschillende atomen. Zuurstof (O2) en stikstof (N2) bestaan elk uit twee identieke atomen en absor­beren geen infrarood vanwege hun symme­trie.

Naast de samenstelling is het verloop van de temperatuur in de atmosfeer over verschillende hoogten belangrijk. Aan het aardop­pervlak heeft de atmos­feer een gemiddelde tempera­tuur van 15 °C. Zij koelt vervol­gens 6 °C per km af tot op onge­veer 14 km hoogte een mini­mum van pakweg -70 °C wordt bereikt. Dit niveau heet de tropo­pauze. Hieronder spreken we van tropo­sfeer, daarboven van stratosfeer. Als we in de stra­tosfeer komen en we blijven doorstijgen, dan zal de tempera­tuur weer toenemen met zo’n 2 °C per km. Dat komt doordat de daar aanwe­zige ozon inkomend ultraviolet licht absorbeert. Die tempe­ratuur­stijging­ gaat door totdat geen omgevingstempera­tuur meer gemeten kan worden omdat de atmos­feer daarvoor dan te ijl is.

De pure stralingsafkoeling van de troposfeer bedraagt ongeveer 1 °C per dag, voor ongeveer 80 % veroorzaakt door straling die afkom­stig is van waterdamp. Maar ook de afwezig­heid van water­damp kan een rol spelen. Daardoor kan de Aarde ongehin­derd naar het heelal stralen. In een woestijnnacht is dat duidelijk merk­baar; het koelt dan snel af. Wéér moet worden opge­merkt dat de getallen gemid­delden zijn. Zeker het latente verticale trans­port kan in sommige gebieden oplo­pen tot meer dan tien maal de gegeven waarden. Het overschot wordt afgevoerd door hori­zonta­le lucht­circulatie. Sommigen hebben daarom voor­speld dat een extra broeikaseffect tot grote stormen zou leiden, maar dat is zeer speculatief.

 

Modellen

Het globale begrip van de atmosfeer is empirisch goed ontwik­keld. Dat wil niet zeggen dat ­men de gevolgen van veranderin­gen een­voudig kan uitre­kenen. Daar­voor is het systeem veel te ingewikkeld. Te meer omdat er complexe zogenoemde mee- en tegen­koppelingen in voorko­men. Om tot kwan­titatieve uitspra­ken te komen moet men gebruik maken van (grote) compu­ters.

De oudste modellen waren globaal. Zij hadden een wereld­wijd karak­ter. Alles werd uitgere­kend aan de hand van gemid­delden voor de hele Aarde. Dat schept problemen. Het CO2-gehalte zal wel zo’n beetje overal gelijk zijn, alhoe­wel de seizoenschom­me­lingen die men overal heeft gemeten wel aangeven dat de men­ging (wereld­wijd) op termijn van één jaar niet volledig is. Maar hoe zit het met de gemid­delde tempera­tuur? Hoe dicht moet het net zijn waarmee men die meet en hoe moet men de getallen wegen met het oppervlak waarvoor ze kenmer­kend worden geacht? Of moet men de meetdichtheid blijven verho­gen totdat het niets meer uitmaakt als men meetpun­ten toe­voegt? Het lijkt erop dat men dat punt nu heeft bereikt, maar is dat waar voor alle andere gege­vens waar­over men dient te beschikken? Na­tuur­lijk heeft men de beschik­king over satellietgegevens over de wol­ken­be­dek­king, maar kan men altijd nauw­keurig hun reflecti­vi­teit voor kortgolvige straling en absorptiever­mo­gen voor langgol­vige straling bepalen? En voor globale modellen: welke rol speelt de structuur in de wolkbedekking die op wereld­schaal niet kan worden meege­nomen? Vragen te over.

Overigens bestaan er ook zekerheden. De albedo (= weerkaat­sing) van de Aarde (0,31) is goed bekend, evenals de samen­stel­ling van de damp­kring en de optische eigenschap­pen van de samen­stel­lende delen. Die eigenschappen zijn bijvoorbeeld hun brekingsin­dex voor kort­gol­vig licht om de strooiing ervan te berekenen en hun absorp­tiebanden in het infra­rood.

Met deze absorptie is overi­gens voor de in wat hogere concen­tratie aanwezige gassen zoals CO2, CH4 en N2O nog iets bijzon­ders aan de hand. Welis­waar is er tot op een hoogte van 14 km slechts een geringe concen­tratie van deze gassen, maar er is toch zoveel CO2 aanwezig dat alle infraroodemissie van de Aarde in het golflengtegebied tussen 13,7 μm en 16 μm al in de eerste 100 meter wordt opgenomen in de atmosfeer­. Dat heeft sommi­gen ertoe verleid te stellen dat deze absorptie al is ‘verzadigd’ en dat verder toevoegen van CO2 geen effect zou hebben. Dat is niet juist.

Als we de mate waarin infrarood wordt geabsorbeerd, afzetten tegen de golfleng­ten, dan krijgen we een klokkrom­me: in het midden van het golfleng­tegebied is zij het hoogst. Naar de flanken (13,7 μm en 16 μm) wordt zij wel minder, maar er blijft een zekere mate van absorp­tie bestaan. Deze flankab­sorptie verzadigt veel minder gauw, omdat zij zo veel zwakker is! Wel wordt het effect van een toena­me van CO2 minder naar­mate er meer van is. Daarom wordt het stralingsef­fect ten gevolge van CO2 als een loga­ritmi­sche term voor de absorp­tie aan de flanken meege­no­men (zie afbeelding 2a).

Een dergelijk verschijnsel doet zich voor bij methaan. Ook daar treedt een zekere ‘verzadiging’ op, maar veel minder sterk, zodat het stralingseffect met een vierkants­wor­tel afhankelijkheid kan worden beschreven. Tevens moet er rekening gehouden worden met overlappende absorpties zoals van CH4 en N2O. Dáárvoor worden dan ook gewogen mengtermen in de bereke­ningen meegeno­men. Alle andere broeikasgas­sen zijn van een dermate grote verdunning dat ze een­voudig lineair kunnen worden behan­deld: twee keer zoveel gas, twee keer zo groot de absorptie van aardse infraroodstra­ling.

Tot nu toe bespraken we alleen de zogenoemde directe effecten van infraroodabsorp­tie door CO2 en andere BKG’s (broeikasgas­sen). Er zijn echter veel mee- en tegenkop­pelin­gen denkbaar, zelfs op wereld­schaal, die de modellen sterk niet-lineair maken. We noemen er hier een paar: hogere temperaturen beteke­nen in eerste instantie minder wolkvor­ming, dus een grotere zonin­straling en dus een meekoppe­ling, een vererge­ring. Een ander gevolg van temperatuurverandering zou kunnen zijn dat het ijs van gletsjers maar vooral van de poolkappen zou gaan smelten. Daardoor wordt de Aarde minder wit en dus minder weerkaatsend. Zij zal als een zwarte zonne­collector meer zonlicht opnemen. De temperatuur stijgt nog meer, een klassiek geval van meekoppeling, waardoor grote veran­deringen zouden kunnen plaats­vinden.

Maar hogere temperatuur betekent ook hogere luchtvochtigheid. Nu is het aan de polen nog erg droog. Als vochtige lucht daar naar toe zou worden getrans­porteerd, kan men veel meer sneeuw verwachten, waardoor de witheid en dus de weerkaatsing van de Aarde zou toenemen, waardoor de temperatuur zou afnemen. Een klassiek geval van tegenkoppeling dus: alle verande­ringen worden min of meer afgeremd.

Wat overheerst? Het zal duidelijk zijn: alleen zeer gedetail­leerde beschou­win­gen, uitgaande van zeer goed gevalideerde gegevens kunnen met zekerheid uitsluitsel over deze dilemma’s geven.

 

Stralingsforcering

Als de temperatuur van de Aarde gemiddeld constant is, heerst er in de strato­sfeer gemiddeld stralingsevenwicht: de inkomen­de stralingsenergie van de Zon is gelijk aan de uit­gaande infrarode stralingsenergie. Wanneer aan de atmos­feer zoge­noemde broeikasgas­sen of aërosolen worden toegevoegd, dan zal de stralings­balans veranderen. De atmo­sfeer zal meer infraro­de aard­stra­ling tegenhou­den. Men noemt dit toene­ming van de ‘stralin­gs­force­ring'(F).

Als ijkjaar nemen we 1765 toen er nog bijna geen industrie was. Dat was al duizenden jaren zo ge­weest. De atmosfeer had dus voldoen­de tijd gehad om in even­wicht te komen. Met behulp van de eerder besproken modellen kan men de flux­veran­de­ring aan de tropopauze bereke­nen. Door dat voor ver­schillende concentra­ties te doen krijgt men een serie uitkom­sten. Die kunnen dan aan een functioneel verband worden aange­past, waardoor er gemakkelijker mee valt te reke­nen. In tabel I is een aantal van die relaties gege­ven.

Andere broeikasgassen zoals CFK-11 en CFK-12, enzovoorts, zijn line­air in hun effect, ΔF = kC, waarin de factor k varieert tussen 0,2 en 0,3 als de concentratie C in ppb (delen per miljard) wordt gegeven.

Met deze gegevens konden onderzoekers afbeelding 3 constru­eren, nadat zij met behulp van massa­spectrometrische methoden uit in ijs ingeslo­ten luchtbelletjes hadden gemeten wat de concen­traties vóór 1950 waren. Het is duidelijk dat de stra­lings­force­ring sinds 1775 behoor­lijk is toegenomen.

 

Water

Het belangrijkste broeikasgas is ongetwijfeld waterdamp. Toch wordt het die naam meestal niet gegeven. De hoeveelheid water­damp in de atmos­feer wordt ‘intern geregeld’; de mens heeft daarop geen directe invloed. We kunnen nog steeds niet op enige schaal regen maken. Veranderingen in de hydro­logi­sche cyclus zijn een eventu­eel indirect gevolg van menselijk hande­len, maar kunnen niet antropo­geen genoemd worden. Wél moet die cyclus altijd in de modellen meegenomen worden. Ruwweg draagt water voor zo’n 80 % aan het broeikaseffect bij.

 

 

Koolstofdioxide (CO2)

Na water is CO2 het belangrijkste broeikasgas. Voor zover de mens het broei­kaseffect versterkt, komt dit vooral door dit gas (zie afbeelding 4). Vandaar de huidige onge­rustheid. Het is daarom de moeite waard om de globale koolstofcyclus te bezien (zie afbeelding 5; de hoeveelheden zijn in gigaton koolstof (GtC); 1 gigaton CO2 zou 44/12 maal zo veel zijn).

Voor de mens zijn twee fluxen belangrijk, want wellicht be­nvloedbaar.

Voor de mens zijn twee fluxen belangrijk, want wellicht be­nvloed­baar: het resultaat van verbran­den van fossiele brand­stoffen (5 GtC per jaar) en de CO2 die vrijkomt door het kappen en verbranden of laten verrotten van hout (2 GtC per jaar)

en door sommige indus­triële acti­vitei­ten (cementproduk­tie) . Die activiteiten over de laatste 200 jaar worden verant­woorde­lijk gehouden voor de toename van de CO2-concen­tratie (afbeel­ding 4).

Het duurt ongeveer vier jaar voordat een atmos­ferisch CO2-molecu­le tijdelijk wordt vastge­legd in een plant of in de oceaan. Dit is niet de tijd die het CO2-systeem neemt om na verho­ging van de concentra­tie terug te keren naar het oor­spron­kelijk gehal­te. Deze is iets van 50…200 jaar. Zo lang neemt het voor de extra CO2 om defini­tief vastgelegd te worden in ge­steente. Deze lange tijden zijn belangrijk wanneer men tot verlaging van het CO2-gehalte wil komen. Maatre­gelen daartoe zullen pas merkbaar effect hebben op een termijn van tientallen jaren.

Een redelijke vraag is natuurlijk of al die extra CO2 sinds 1765 is veroorzaakt door de mens. Schat­tin­gen leiden tot een jaar­lijkse emissie in 1995 van 5,5 GtC/a. Naast CO2 van fossie­le brandstof en cementproduktie is er ook nog CO2-toename ten gevolge van ontbossing in de tropen. Deze hoeveel­heid wordt geschat op 1,6 GtC/a. Dat is een getal met een grote fouten­mar­ge (± 0,5 GtC/a). Voorlopig lijkt het vrij­ge­ko­men land hoofd­zake­lijk voor land­bouw te worden ge­bruikt en dan is de tijd waarvoor CO2 wordt vastgelegd (in gewas) te kort om in de CO2-balans te figureren. Maar herbe­bossing in subtro­pische en matige streken legt jaar­lijks naar schatting 0,5 GtC vast.

CO2 is ook een ‘meststof’ voor bomen. Men schat dat zo (met een grote foutenmarge) circa 1,3 GtC per jaar extra wordt vast­gelegd.

Over de uitwisseling van het oppervlaktewater van de oceanen met de diepere lagen is heel weinig bekend, maar als we het jaarlijkse budget van de antropo­gene CO2 opmaken, dan ziet dat er ongeveer uit zoals weergegeven in tabel II. Het lijkt er een beetje op dat men als een ‘missing sink’ de definitieve opslag in de diepe oceaan heeft genomen. Erg veel ander be­wijsmateriaal is er niet. Maar een feit is dat het CO2-gehalte van de atmosfeer sinds 1960 jaarlijks met zo’n 1,6 ppm is toegeno­men tot de huidige waarde van 358 ppm.

 

Methaan

Methaan (aardgas, CH4), het na CO2 meest bijdragende broei­kasgas, komt momen­teel met een gehalte van 1,72 ppm in onze atmosfeer voor. De concen­tratie neemt met 0,8 % per jaar toe. Waarom zouden we ons over zo weinig CH4 druk maken? De Green­house Warming Potential (GWP) van methaan, de effec­ti­vi­teit voor stra­lingsfor­cering, is door zijn sterke­re infra­roodab­sorp­tie ruw­weg 60 keer zo groot per gram als die van het broeikas­gas CO2. Daar staat tegen­over dat CH4 door hy­droxyl- (OH-)radicalen binnen negen jaar al tot de helft wordt afge­bro­ken tot H2O en zwak-IR-actieve produkten. Het effect is daar­door kortston­dig verge­leken met dat van CO2, maar als men een systeem be­schouwt waar elk jaar een tiental ppt (parti­cles per trillion, 1012) bij­komt, dan draagt ondanks zijn lage concen­tra­tie methaan dus toch aan­zienlijk bij aan de stra­lings­focering en dus aan het broeikas­effect.

Wat zijn de bronnen van me­thaan in de atmosfeer? In eerste instantie moeras­sen (bij ons heette methaan vroeger niet ‘aardgas’, maar ‘moerasgas’). Ook schijnt er een vergelijk­baar proces op te treden in natte rijstvelden (alhoe­wel dit door Indiase wetenschappers wordt bestre­den). Darmgisting bij dieren, produktie door termieten en verliezen bij winning van olie en aardgas zijn andere bronnen. Dan zijn er nog ver­schei­de­ne kleinere zoals steenkoolmij­nen, aange­plempte gronden (vaak afval) en de oceanen. Ten slotte nog de lekkage van pijplij­nen voor aardgas. Met name de Siberische vertonen veel lekken.

Er is nog een verbor­gen moge­lijkheid. Methaan vormt zogenoemde hydra­ten met water, die bij lagere temperatuur en/of onder hogere druk stabiel zijn. Er is de veronder­stel­ling geuit dat de grond van de toendra veel van deze hydra­ten bevat. Een tempe­ratuurver­hoging van de Aarde zou deze hydraten kunnen doen ontleden, waardoor veel extra methaan in de atmo­sfeer vrij zou komen. Een dergelijke ‘voorraad’ methaan wordt ook wel veronder­steld zich in de diepe oceaan te bevinden. Ver­hoogde temperaturen zouden ook die hoeveel­heid kunnen vrijma­ken. Hoeveel dat zou zijn is pure speculatie, we laten het daarom bij deze opmerking.

 

Andere broeikasgassen

Naast CO2 en CH4 zijn er nog enkele andere broeikasgassen, zoals N2O (lach­gas) en CFK en in het algemeen halo-alkanen. N2O komt vooral vrij uit occanen en (sterk variërend) uit zoet-waterreservoirs. Het is nog niet duide­lijk welke proces­sen tot N2O-vorming leiden. Vooral bodems lijken N2O vrij te maken, door nitrificatie onder anaërobe condities. Verder geven explo­siemoto­ren en de chemische industrie N2O af en komt het vrij bij verbranden van biomassa. Het gehalte aan N2O is nu 0,310 ppm, dat is 8 % hoger dan in het pre-indus­triële tijd­perk; de toename is circa 0,2…0,3 % per jaar, kennelijk een heel geringe antro­po­gene bijdrage.

Daarnaast hebben we nog de CFK’s, de volledig gehaloge­neerde koolwa­terstof­fen. Eenmaal in de stratosfeer dragen ze bij aan het ontstaan van het ozongat. In de tropo­sfeer dragen ze bij aan het broeikaseffect. Ze zijn zeer stabiel en zullen hun bijdrage lang leveren. Hun Global Warming Potenti­al is zéér hoog, tussen 4000 en 8000. Dat wil zeggen bij gelijke hoeveel­heid zijn ze 4000 tot 8000 keer zo effec­tief voor opwarmen als CO2! Gelukkig zijn de concentra­ties niet zo hoog, ze liggen rond de 100 ppt en alles te zamen circa 2000 ppt. Zij dragen toch bij tot het (extra) broeikas­effect. Gelukkig zijn hun concentraties in de atmo­sfeer nu gestabili­seerd of licht aan het dalen. Ge­vreesd moet echter worden dat de CFK’s door HFK’s (waterstof-fluorkoolwaterstoffen) vervangen zullen wor­den. Die laten ozon ongemoeid, maar zijn een broeikasgas met een aan CFK’s gelij­ke GWP. Naast N2O en de CFK’s heeft men dan nog O3 (ozon) in de tropo­s­feer. Onge­veer 10 % van het O3 in de strato­s­feer wordt naar de tropos­feer gevoerd, maar het komt ook vrij bij de oxidatie van methaan. Ozon in de troposfeer draagt bij aan het broeikasef­fect, in de stratosfeer vangt het de directe zonne­straling in. Meer ozon dáár betekent afkoe­ling. In de laatste jaren is boven Antarc­ti­ca een vermindering van het ozongehalte geconsta­teerd, in mindere mate evenzo boven Arcti­ca. Bij de tropen lijkt het onveranderd te zijn. Er is van het O3 netto een klein verwar­mend effect te verwach­ten.

 

Aërosolen

Aërosolen worden veroorzaakt door stofstor­men, door zeezout, maar ook door het onder invloed van zonlicht en water samen­klon­teren van zwaveldi­oxidegas tot kleine druppeltjes zwavel­zuur (zure regen). Ongeveer 10 % van het stof en vrijwel alle zure regen is van antropo­gene oorsprong, en dat geldt waar­schijn­lijk ook voor het verbranden van biomassa, al is dat niet echt zeker. De verblijftijd van aërosolen in de tropo­sfeer is van de orde van enige dagen tot enige weken. Voor een accumu­lerend effect behoeft dus niet te worden ge­vreesd. Het vóórkomen van aëroso­len is erg ongelijk, omdat zij vaak van lokale oorsprong zijn en betrekkelijk snel weer neerslaan. Zo wordt bijvoorbeeld 80 % van de massa van natuurlijke en ant­ro­po­gene aërosolen op het noorde­lijke halfrond gevonden.

Sulfaat-aërosolen vergroten vooral de totale weerkaatsing van de Aarde en leiden tot afkoeling. Roet­deel­tjes echter zijn meer als een broeikasgas. Het totale directe gemid­delde effect van aërosolen op de stra­lingsforcering is niet onbelangrijk en zal onder voorbehoud waar­schijn­lijk tot enige afkoeling lei­den.

 

De temperatuur van de Aarde

De stralings­force­ring is sinds 1765 behoorlijk toegenomen. Maar is het daardoor sindsdien ook warmer op Aarde gewor­den? Redelijk betrouwbare temperatuurreeksen zijn beschik­baar, maar zij zijn althans voor de vroegste decennia (1860-1890) open voor dis­cus­sie. Zijn de thermome­ters goed genoeg geweest, was het meetnet dicht genoeg, enzovoorts.

Het wordt alle­maal iets be­trouw­baarder wanneer we alleen naar de verschil­len tussen de jaren kijken; dan vermijden we wel­licht de syste­mati­sche fou­ten. Afbeelding 6 laat het verloop van deze verschil­len ten opzichte van het gemid­delde van 1920-1940 zien. Over de gehele 134 jaar zou men tot een opwarming van 0,5 °C kunnen besluiten. De afgelopen 130 jaar lag die tempe­ra­tuurverhoging binnen de natuurlijke schommeling van het kli­maatsysteem, maar dat zegt niets over het gedrag in de vol­gende 100 jaar. De statis­tiek van het tempe­ratuurver­loop is over langere tijd niet goed bekend en zal dat voor­lopig ook niet worden.

Maar wellicht bieden recente, heel uitvoerige klimaat­simula­tiepro­gram­ma’s wél soelaas. Zij nemen vooral ook het gedrag van de oceanen en hun koppe­ling via het klimaat aan de land­mas­sa’s mee. We kunnen die programma’s bij verschil­lende begin­voorwaarden laten starten. Elke keer krij­gen we een verloop in de tijd te zien van aller­lei grootheden, waaron­der de tempera­tuur. Door dat een groot aantal keren voor ver­schil­lende beginwaar­den te herhalen, krijgen we een soort ruis, een soort statistiek.

Als we voldoende statistiek hebben over de huidige situatie, laten we het programma weer lopen, maar vergroten we heel lang­zaam bijvoor­beeld de CO2-concentratie tot men een verdub­be­ling ten opzichte van de eerdere situatie heeft bereikt. Ook dat herhalen we een aantal keren en we bekijken of de bereken­de waar­den voor de inmiddels verlopen jaren aanslui­ten bij de geme­ten waarden en of latere boven de ‘synthetische’ ruis uitste­ken. Het resul­taat voor twee compu­terberekenin­gen zien we in afbeelding 7. De huidige temperatuur is aange­geven. Men zou kunnen conclu­de­ren, dat het opwarmend effect van de broei­kas­gas­sen nèt waarneem­baar is.

Er zijn ook andere, meer experimentele indicatoren denk­baar: gede­saggre­geerde gege­vens, vooral in conti­nenten en oceanen ge­schei­den. Ze zijn samen­gevat in afbeelding 8. De stratosfeer lijkt tussen 1979 en 1994 zo’n 0,6 °C kouder te zijn gewor­den. De troposfeer werd tussen 1958 en 1994 zo’n 0,3 °C war­mer, maar toont geen veran­dering over de laatste 15 jaar, terwijl de tempera­tuur op het aardop­per­vlak zo’n 0,3…0,6 °C hoger schijnt te zijn gewor­den.

De gemiddelde sneeuwbe­dekking op het Noor­delijk Halfrond lijkt 10 % te zijn afgenomen over de laatste 21 jaar en de gletsj­ers geven in het algemeen een teruggang te zien. Het opper­vlakte­water in de oceaan volgt de aardtem­pera­tuur: een stij­ging van 0,3 °C tot 0,6 °C sinds het eind van de vorige eeuw. Opmer­kelijk is dat over de laatste 40 jaar de nacht­temperatu­ren sneller zijn gestegen dan die van de dag, iets wat ook uit de compu­ter­modellen naar voren komt. Ten slot­te is het zeeijs op het Noordelijk Halfrond wat verminderd over de laatste 20 jaar en sinds 1990 óók op het Zuidelijk Halfrond.

 

Naast de temperatuur zijn er ook hydrologische verschijn­selen waar­neembaar. Ze zijn in afbeelding 9 aangegeven: de hoge bewol­king is sinds 1951 toegenomen, maar blijft sinds 1981 gelijk. De middenniveau-bewolking op het Noordelijk Halfrond is ook toegenomen, evenals de hogere convectieve wolken. De mooi-weercumulus is echter afgenomen. Min of meer hetzelfde geldt voor het Zuidelijk Halfrond. De subtropen zijn droger gewor­den en de verdamping van water in de VS en in het terri­torium van de voormalige Sovjetunie is afgeno­men. Zo is ook de grond in dat gebied natter geworden. Boven de oceaan vindt men overi­gens meer waterdamp dan vroeger in de lucht. Al deze ver­schijn­se­len kunnen in verband gebracht worden met modelle­ringen ­van het broei­kas­ef­fect, maar zeker­heid geven ze niet.

Als er al een verandering komt is het steeds de vraag of menselijk handelen daarvoor verantwoor­delijk is. Van bijzon­der belang is het mogelijke stijgen van de zeespiegel. Het bepalen van de hoogte daarvan is aan verschil­lende moeilijk­heden onderhevig. Men meet de zeespiegel ten opzichte van het land, maar wat als de bodem daalt? Meten we de zee- (of ijs-)hoog­te met een satel­liet, dan moet men de baan van die satel­liet tot op de centime­ter nauw­keurig kennen. Aan beide tech­nieken is veel aan­dacht besteed, de consen­sus lijkt te zijn dat een stijging van 2…7 c­m over de laatste honderd jaar heeft plaatsge­von­den. Deze wordt vooral veroor­zaakt door de warmte­uitzetting. Door de lang­zame uitwisse­ling van diep en ondiep oceaanwater kan verwacht worden dat de ‘rijzing’ nog vele jaren door zal gaan.

De Intergovernmental Panel on Climate Change (IPCC) van de VN bestudeert intensief alle gegevens over het broeikaseffect. Het panel durft in stelligheid niet verder te gaan dan dat ‘The balance of evidence suggests a discernible human influen­ce on global climate‘. Voorzichtiger kun je het niet zeggen: niet eviden­ce, maar the balance of eviden­ce. Niet shows, maar su­ggests. En: discernible human influence in plaats van per­cep­ta­ble, of zelfs maar gewoon human influen­ce. Nee je moet erg goed kijken voor je het ziet, het gaat niet vanzelf: dis­cerni­ble. En dan influ­ence on global climate: Er wordt niet eens gepoogd aan te geven wàt voor invloed. Wordt ’t kouder, war­mer, natter, droger? Het IPCC zegt het niet, maar erkent wel de invloed van de mens. Het is moeilijk om met die uit­spraak van mening te verschillen.

 

Conclusies

Klimatologen adviseren regeringen over de moge­lijke gevolgen van het (extra-) broeikaseffect. Moeten zij adviseren alle industriële CO2-produktie te verbieden, haar te belasten of de zaak op zijn beloop laten? Ik benijd de klimatologen niet. Zij zouden toch eigen­lijk een antwoord moeten kunnen verzin­nen. Maar dat lijkt niet zo te zijn. Het is eerder: ‘Er moet nog meer onder­zoek gebeu­ren’.

Ik ben zelf geen klimatoloog, ik ben spectroscopist en weet als zodanig iets van licht en materie af. Maar ik heb dit verhaal na enige studie geschre­ven en voel mij als een onbe­trokken intermediair. Dan vind ik het passend als ik voor de lezer opschrijf wat ik er van denk. En wel in drie categorie­n: wat weten we (vrijwel) zeker, wat vermoeden we en wat kunnen we voorlopig alleen maar geloven?

De toename van de CO2– en CH4-concentraties zal voorlopig nog wel door­gaan, zeker wat het effect op de temperatuur be­treft. Dat heeft een ‘uitlooptijd’ van ten minste honderd jaar. Dat bete­kent dat we wel zeker weten dat het warmer wordt in de volgende honderd jaar. Gemiddeld 2…3 °C en méér aan de polen dan aan de evenaar.

Dat betekent ook dat – puur door thermi­sche expansie van het oppervlak­tewater – de zee­spiegel ongeveer twintig centi­me­ter zal stijgen, mis­schien iets meer. Ik vermoed dat de ‘verwoes­tij­ning’ van het subtropisch gebied verder zal worden bevor­derd en dat in het alge­meen soorten landbouw die het al moei­lijk hebben verder in de verdrukking komen, behalve als ze door de opwar­ming juist minder marginaal worden. Toch weer wijn uit Nederland? Gegeven onze geografische positie zal de druk op de subtropen wellicht leiden tot een hogere druk van politieke of economi­sche vluch­te­lingen. Ik vermoed ook dat Nederland de veranderingen bij zal kunnen houden, het is een verstandig land dat, als het getij verloopt, de bakens tijdig verzet.

Ik geloof niet dat we binnen afzienbare tijd ‘Amersfoort aan Zee’ zullen mee­maken. Wel geloof ik, gegeven de onzeker­heid van de berekeningen, dat de zogenaamde Small Island States zich terecht zorgen maken. Het gaat toch niet aan de bewoners van deze eilanden in grote moeilijkheden te brengen door onze emissies.

Ik geloof niet dat voldoen­de bewijs beschik­baar is dat grote stormen zullen plaatsvinden. Ik geloof niet dat in Neder­land een subtro­pisch klimaat zal ontstaan.

Wat geloof ik dan wel? Ik vermoed, met aan zekerheid grenzende waarschijn­lijkheid, dat het langdurig effect, typerend voor het broeikaseffect van CO2, juist is. En dát betekent dat regeren in dit geval echt vooruit­zien moet zijn. Maatrege­len die we nu nemen zullen hun effect over 10…20 jaar heb­ben, dus is het hoog tijd om ermee te beginnen.

(EINDE TEKST)

 

(QUOTES IN KADERS)

Als er al een klimaatverandering komt, is het steeds de vraag of menselijk handelen daarvoor verantwoor­delijk is

 

Het gaat toch niet aan de bewoners van eilanden in grote moeilijkheden te brengen door onze emissies

(BIJSCHRIFTEN)

(BIJ TEKSTKADER)

Afb. 1 UV- en IR-stralingsfluxen door de atmosfeer.

 

(BIJ TEKSTKADER)

Afb. 2 Netto UV-, IR- en convectiefluxen.

 

(BIJ DE EERSTE TEKSTCURSIVERING)

Afb. 2a Absorptie bij toenemende concentraties. Het gas blijft in de flanken absorberen. Het midden van de absorptieband gaat een steeds kleinere rol spelen.

 

(BIJ DE TUSSENKOP WATER)

Afb. 3 Stralingsforcering van verscheidene broeikasgassen vanaf 1765.

 

(BIJ DE TUSSENKOP KOOLSTOFDIOXIDE)

Afb. 4 Toename van de concentratie van atmosferische CO2 in de laatste 250 jaar afgeleid uit metingen aan in Antarctisch ijs gevangen luchtbelletjes en uit metingen op Hawaii sinds begin jaren vijftig.

 

 

(BIJ DE TUSSENKOP KOOLSTOFDIOXIDE)

Afb. 5 De koolstofreservoirs en -stromen in giga-metrieke ton (109). De onderstreepte getallen hebben betrekking op CO2-accumulatie ten gevolge van menselijke activiteit.

 

(BIJ DE TUSSENKOP DE TEMPERATUUR VAN DE AARDE)

Afb. 6 De eenjarige voortschrijdende gemiddelde afwijking van de gemiddelde temperatuur in de periode 1925-1935.

 

(BIJ DE TUSSENKOP DE TEMPERATUUR VAN DE AARDE)

Afb. 7 Huidige afwijking van de gemiddelde temperatuur in de ‘synthetische’ ruis van twee broeikasmodelberekeningen. (TOE­VOEGEN) MPI CO2 anom is de verhoging van de gemiddelde we­reldwijde temperatuur bij toename van de CO2-concentratie vol­gens het klimaatmodel van het Duitse Max Planck Instituut. Hadley CO2 anom : hetzelfde, maar dan berekend met het kli­maatmodel van het Britse Hadley Institute. MPI aer anom en Hadley aer anom : in beide klimaatmodellen wordt nu ook uitge­gaan van hogere concentratie aërosolen. Die zorgen voor afkoe­ling, c.q. gerin­gere opwarming van CO2 alléén zou doen. De grafiek in het horizontale vlak laat zien hoe het klimaat zich volgens beide modellen zonder toename van CO2 en aërosolen zou g­edragen.

 

(BIJ DE TUSSENKOP DE TEMPERATUUR VAN DE AARDE)

Afb. 8 Temperatuurindicaties voor het broeikaseffect.

 

(BIJ DE TUSSENKOP DE TEMPERATUUR VAN DE AARDE)

Afb. 9 Hydrologische indicaties voor het broeikaseffect.

 

 

 

(KADER BIJ FIGUUR 1 EN 2 EN BIJ TUSSENKOP MODELLEN)

De Aarde ontvangt en weerkaatst kortgolvig (UV) licht en zendt licht met een lange golflengte (IR) uit. Aan de hand van afbeelding 1 be­schrijven we hier de weg die kortgol­vig (ultra­vio­let en zicht­baar) licht aflegt dat op de Aarde valt. Eerst moet het licht de stratosfeer passeren. De aldaar (nog) aanwe­zige ozon fil­tert het UV-deel weg en verder wordt het licht voor- en ach­terwaarts verstrooid (blauw licht meer dan rood licht, daarom is de lucht hier beneden blauw, boven de atmo­sfeer is de hemel zwart). Doordat de druk er laag is, neemt de lichtin­tensi­teit naar beneden toe maar langzaam af. Nadat de tropo­pauze is gepas­seerd wordt de dicht­heid van de dampkring en daardoor de ver­strooiing van het licht groter. Er treedt enige absorptie op door water en troposfe­risch ozon. Het licht wordt ver­strooid, geabsor­beerd en gere­flec­teerd door aller­lei soorten van wolken en het wordt verstrooid en geabsorbeerd door atmo­sferi­sche stof­deeltjes. Van de 342 Wm-2 die binnen­kwam, bereikt gemid­deld 183 Wm-2 het aardopper­vlak, waarvan 23 Wm-2 direct weer wordt weerkaatst. Netto ont­vangt het aard­op­per­vlak dus 160 Wm-2. We volgen deze kortgol­vige flux vanaf de Aarde terug de ruimte in. Aller­eerst wordt hij vergroot door het terug­ver­strooi­de licht van stofdeeltjes en moleculen in de tropos­feer en door het van de wolken de ruimte in weer­kaatste licht. Alles te za­men treedt aan de buitenzijde van de atmos­feer 106 Wm-2 uit. Dat is 31 % van de inkomen­de 342 Wm-2 ofwel de ‘albedo’ van de totale Aarde, de weerkaatsing, is 0,31.

Alle objecten van een eindige temperatuur stralen licht uit. Ook de Aarde en de omringende atmos­feer. Bij de tempe­ra­tuur die beide hebben is dat infra­rode straling. Zoals ge­llus­treerd in afbeelding 1 volgen we de infra­rode flux, maar nu vanaf het aardop­pervlak. Gemid­deld is de IR-flux daar 395 Wm-2 (naar boven). Door absorptie in waterdamp, wolken, CO2, CH4 en andere broeikas­gassen neemt deze flux naar boven toe af tot ongeveer 240 Wm-2 bij de tropopauze en treedt er uiteinde­lijk 236 Wm-2 uit. Daarmee is de Aarde in stralings­evenwicht, want deze flux, vermeer­derd met de gereflec­teer­de kortgol­vige flux (106 Wm-2), is exact gelijk aan de 342 Wm-2 die op het aard­sys­teem viel.

Het feit van de stralingsbalans zou een mogelijkheid kunnen scheppen het broeikasef­fect direct te meten. Als de Aarde opwarmt, of afkoelt, is de balans uit even­wicht. Nauwkeu­rige infrarood- en ultraviolet-metingen met satellieten zouden deze onbalans moeten kunnen constateren.

Er is ook een benedenwaartse infrarood flux, die echter niet van buiten de dampkring komt maar in de stratosfeer ontstaat, sterk toeneemt in de tropos­feer en uiteindelijk 335 Wm-2 op het aardoppervlak deponeert. Deze is het gevolg van de in alle richtingen uitgezon­den straling van eerder met lichtener­gie opgeladen broeikasgassen en wolken. Daarnaast, zagen we, valt er 160 Wm-2 kortgolvige straling op het aardopper­vlak. Samen met de langgol­vige is dat dus 495 Wm-2.

Door het aardop­per­vlak wordt 395 Wm-2 uitge­zon­den. Er is dus een overschot van 100 Wm-2 dat, wil het aardopper­vlak gemiddeld een constan­te temperatuur hebben, op een andere wijze dan door straling moet worden afgevoerd. In tegenstelling tot de bui­ten­zijde van de atmosfeer is de ‘binnen­zijde’, het aardop­pervlak, niet in stralings­evenwicht. Het ‘overschot’ aan de aardzijde moet naar de atmos­feer worden afgevoerd. Dit trans­port heeft twee compo­nenten: het latente en het sensi­bele trans­port. Het eerste wordt veroor­zaakt door het verdampen van water en het weer conden­seren in een hogere lucht­laag. Deze flux bedraagt 85 Wm-2, waarmee per jaar gemid­deld 970 mm water wordt gecircu­leerd. De resterende 15 Wm-2 wordt als sensibele flux door geleiding en turbu­lente bewegingen in de tropos­feer verzorgd.

De ver­schillen­de netto fluxen zijn weergegeven in afbeelding 2. Bedacht moet daarbij worden dat over wereldwijde gemid­delden is gesproken.

 

(TABEL BOVEN TUSSENKOP WATER)

Tabel I

 

Stralingsforcering (ΔF in Wm-2) voor gassen

 

 

Gas  Functie   Opmerkingen

CO2  ΔF = 6,3 ln(C/C0)   met C0 = 279 ppm

CH4  ΔF = 0,036 (ÖM – ÖM0)*   met M0 = 790 ppb

N2O  ΔF = 0,14 (ÖN – ÖN0)*    met N0 = 0,027 ppb

*met correctie termen voor overlappende absorpties van CH4 en N2O (C = koolstof, M = methaan, N = stikstof)

 

(TABEL BOVEN TUSSENKOP METHAAN)

Tabel II

Jaarlijks Budget

 

EMISSIES                           OPSLAG

 

Brandstof en/of cement   5,5 ± 0,5 Atmosfeer      3,3 ± 0,5 GtC/jr

Hergroei       0,5 ± 0,5

Tropisch Bos       1,6 ± 1,0 Bemesting      1,3 ± 1,5

          Oceanen   2,0 ± 0,8

Totaal               7,1 ± 1,1      7,1 ± 1,3

 

NedCar etaleert zijn kennis met Access (1996 7)

 

Schermafbeelding 2016-01-21 om 20.58.50

 

NedcarAcces

1996 7

TECHNISCH NIEUWS

 

‘ECO-SPACEWAGON’ VERBRUIKT 1 LITER OP 21 KM + GEWICHTSBESPARING 22 % + TOTALE CO2-UITSTOOT 40 % OMLAAG + MILIEUBELASTING 25 % MINDER

 

NedCar etaleert zijn kennis met Access

 

Auto op zoek naar fabriek

 

In krap drie jaar heeft NedCar de Access ontwikkeld. De auto is licht, zuinig en gemaakt van veel herbruikbare materialen. Met de Access profileert NedCar zich als ontwerpbureau voor auto’s. Het zoeken is nu nog naar een fabrikant die de Access in produktie wil nemen.

– Erwin van den Brink –

 

De auteur is redacteur van De Ingenieur.

 

 

Hoewel de technologie die Product Deve­lopment & Engineering (PD&E) van NedCar in de Access heeft gestopt in menig opzicht baanbrekend is, schuilt het werkelijke belang van het project in de strategische positie die NedCar er als ontwerpbureau mee hoopt te verove­ren in de auto-indus­trie. De auto, waarvan een prototype tijdens de Geneefse autosalon werd gepresenteerd, is figuurlijk slechts een vehi­kel om de technologie van NedCar te marke­ten binnen de auto-industrie.

NedCar nodigt geïnteresseerden van over de hele Wereld dan ook uit om op 7 en 8 mei 1996 in Eindhoven het pretentieuze Europe­an Automotive Technology Congress 1996 bij te wonen, waar Europees commissaris Edith Cresson zal spreken. Wat Cresson ook te melden heeft, hét onderwerp van de vele lezingen en fora is: de Access (Aluminium-based Concept of a CO2-Emissions Saving Sub-compact Car). In feite is dat con­gres de etalage waarin de auto, in casu de kennis van NedCar PD&E, moet worden verkocht aan een autobou­wer, of aan meerdere als zij delen willen gebruiken van het ontwerp. Dat laatste zou jammer zijn, maar dan nog is het project geslaagd: de bedoeling is over het voetlicht te bren­gen wat Nedcar allemaal kan: het ontwikkelen van een compleet systeem voor wie dat wil.

 

Uitbesteding

NedCar is als bouwer van Volvo’s te klein om een full size PD&E in stand te houden. Deze handicap én het nadeel dat Nedcar geen merknaam is, bleken een blessing in disguise.

Autobouwers besteden namelijk steeds meer constructiewerk uit. De ontwikkeling van nieuwe technologie heeft steeds meer plaats op subsysteemniveau (carrosserie, aandrijftrein, elektronica en dergelijke) bij de toeleveranciers die een enorme schaalver­groting beleven. Toeleveranciers opereren steeds meer wereld­wijd met hun expertise en verkopen hun spullen tegelijkertijd aan meerdere grote, concur­rerende, auto­bouwers. De autobouwers zelf positioneren hun produkten steeds meer emotioneel, op grond van een gevoelsmatig onderscheid (bij de consument) in plaats van een technisch onderscheid.

De volgende stap is dat automerken hun totale produktontwikkeling gaan uitbesteden aan een externe systeemarchitect zoals NedCar, om zich helemaal te kunnen richten op de emotiemarke­ting. Voor de grote engineeringafdelingen van de autobouwers is die voorwaartse integratie een bedreiging. Voor NedCar geldt dat niet, omdat het geen merknaam is.

Aan Access werken twintig Europese automotivebedrijven mee uit Duitsland, Frankrijk, Groot-Brittannië, België, Noorwegen, Liechtenstein en Nederland. Een op zichzelf staand ingenieursbureau, wat NedCar PD&E in deze is, kan net zo goed als een constructieafdeling van een auto­maker subsys­temen integreren tot een optimaal systeem. En misschien nog wel beter; het turn key uitbesteden van verwer­ving van de nodige technologie is voor NedCar PD&E minder bedreigend dan voor de grote opgetuig­de constructiebureaus van de autofabri­kanten die daardoor hun eigen competentie zien afkalven.

Om het gevestigde belang van deze bureaus te kunnen aanvallen, om daadwerkelijk autobouwers te interesse­ren voor uitbesteding aan Ned­Car stelde het Helmonds bedrijf zich twee voorwaar­den. NedCar benadrukt dat zijn ontwerp uitont­wikkeld is en gereed voor massa­produktie. Het project is dermate gedetailleerd uitgewerkt dat de gebruiker van de auto alleen nog maar een op afstand uitleesbare smartcard bij zich hoeft te dragen. Als je naar de auto toeloopt, ontgrendelt hij zich, schakelt de elektronische systemen in en is startklaar. Bij het verlaten van de auto gebeurt het omgekeerde.

Ten tweede moest de Access ten opzich­te van de nieuw­ste bestaande model­len in zijn klasse (middel­grote ge­zinsauto) een technolo­gische sprong voorwaarts zijn. Dat kon mede doordat NedCar erin slaagde het project te laten opnemen in het Europese technologiepro­gramma Eureka.

 

Licht en zuinig

Het bedrijf definieert het ontwerp vooral in termen van een kleinere ‘milieug­ebruiks­ruimte’ gedurende de gehele levenscyclus: de auto is niet alleen lichter en zuiniger maar is ook gemaakt van een groter percen­tage herbruikbare materialen waarvan de verwerking minder energie vergt. Het bouwen, ‘op­rijden’ van een Access en het hergebruiken van zijn sloop­materiaal veroor­zaakt 40 % minder CO2-uitstoot dan het geval is bij een conventionele auto. De totale milieubelasting (ener­gieverbruik en grondstoffenver­bruik) vermindert met 25 %.

Het spaceframe van de carrosserie is opgebouwd uit geëxtrudeerde aluminiumprofielen van Reynolds Automotive, een onder­deel van het gelijknamige aluminiumconcern. Veel gewichtsbe­sparing en torsiestijfheid is te danken aan het bijzondere ingelijmde dakpaneel dat is gemaakt van Hylite, een laminaat van kunst­stof en alumimium dat is ontwikkeld door Koninklijke Hoog­ovens. Het frame wordt aan de buitenkant opgetuigd met koets­delen van kunststof: bumpers, spatborden en deurpanelen. Bumpers en spatborden weerstaan een botsing bij 16 km/h zonder blijvende vervorming, een voordeel boven blikken auto’s in het steeds drukkere stadsverkeer.

De 1,7 viercilinder multipoint injectiemotor (met variabele regelbare keramische kleppen, van Hoechst) die NedCar ontwikkelde, weegt 50 % minder dan zijn conven­tionele tegenhangers (83 kW bij 5500 toeren). Hij voldoet aan de strengste Europese en Amerikaanse (Californische) emissie-eisen en verbruikt 4,7 liter benzine op 100 km in de Europese Test Cy­clus.

Ten slotte is ook het chassis gemaakt van robuuste geëxtrudeer­de profielen van alumium (Reynolds). Dat alles maakt de auto ongeveer 250 kg lichter dan gezinsauto’s van vergelijkbare afmeting (4,23 m x 1,68 m x 1,48 m): 850 kg tegen gemiddeld 1100 kg.

Als het ontwerp werkelijk helemaal produktierijp is, zoals NedCar stelt, dan is dat opmerkelijk: het hele project is in krap drie jaar gerealiseerd. Veel autofabrikanten hebben toch gauw vijf jaar nodig hebben om een opvolger van een bestaand model te ontwikkelen, waarbij de technologische verbeteringen dan incrementeel zijn en niet substantieel zoals bij dit model.

 

‘Europe­an Automotive Technology Congress’, 7 en 8 mei 1996, Eindhoven. Inl.: Euro­forum, postbus 845, 5600 AV Eindhoven, tel. (040) 29 7 48 90, fax (040) 297 49 76.

 

 

 

 

(BIJSCHRIFTEN)

 

(OPENINGSFOTO FOTO 1)

 

(BIJ FOTO 2 + 4)

Achteras (links) en voorwielophanging van de Access; er is gebruik gemaakt van veel herbruikbare materialen.

 

(BIJ FOTO 3)

Het spaceframe van de carrosserie is opgebouwd uit geëxtrudeerde aluminiumprofielen van Reynolds Automotive.

 

(BIJ FOTO 5)

Door gebruik van een op afstand uitleesbare smartcard wordt de auto ontgrendeld en worden de elektronische systemen ingeschakeld, zodat de auto direct startklaar is.

Fokker blijft hopen op redding (1996, nr. 2)

FokkerGeheugenvanNed
De Eindlijn Fokker 100. Constructiehal van Fokker Aircraft B.V., Hal I op Schiphol Oost.Maker: Fotograaf: Luuk Kramer. N.V. Koninklijke Nederlandse Vliegtuigenfabriek 1992. Via Het Geheugen van Nederland.
Fokker_F28-2000
Foto: Fokker N.V.
Fokker_download
Bouw Fokker F-27, jaren 1960.

 

 

 

 

Lees ook: http://www.vergetenverhalen.nl/2015/09/24/de-ondergang-van-fokker/

BOEDELKREDIET EN UITSTEL VAN BETALINGEN GEVEN RES­PIJT + GEGADIGDEN VOOR OVERNAME MELDEN ZICH PER FAX + VERGELIJKING TUSSEN DAIMLER EN SAMSUNG

 

Samsung geïnteresseerd in kennis gehele luchtvaartcluster

 

Fokker blijft hopen op redding

 

Met een boedelkrediet van 225 miljoen gulden over­heids­geld en dank zij surséance van betaling kan vliegtuigbou­wer Fokker de komende weken nog het hoofd boven water houden. Het bedrijf is naarstig op zoek om te redden wat er te redden valt van de 7900 banen die nog resteren na vier reorganisa­ties.

– Erwin van den Brink –

 

De auteur is redacteur van De Ingenieur.

 

 

Controlerend aandeelhouder Daimler Benz besloot op 22 januari 1996 het financi­le infuus uit Fokker te trekken. Sinds de vlieg­tuigbouwer vijf maanden geleden ’tech­nisch fail­liet’ ging (het eigen vermogen was volledig op) hield Daimler Fokker draai­end met 1,4 miljard gulden aan overbrug­gingskredieten en stelde het zich garant voor 900 miljoen gulden aan leningen. Fokker ver­liest momen­teel 4 miljoen gulden per dag, naar verwachting ongeveer 1,5 miljard gulden in 1995.

Daimler Benz Aerospace kocht begin 1993 voor 600 miljoen gulden 78 % van de aandelen van Fokker Holding, dat op zijn beurt 51 % controleert van de Fokker NV waaronder alle werkmaatschappijen ressorteren waarvan de grootste Fokker Aircraft nu surséa­nce heeft. Daimler Benz zou de resterende 22 % staatsaandelen in de holding binnen drie jaar na sluiting van de overname-o­vereenkomst van de staat overnemen, maar daarvan zal het niet meer komen. Volgens minister Wijers van Economi­sche Zaken zal Daimler zich waar­schijnlijk helemaal uit de luchtvaart terug­trekken. Het belang in Dornier is al teruggebracht en er gaan geruchten dat Moto­ren und Turbinen Union (MTU) wordt overge­daan aan BMW/Rolls Royce.

 

Love baby

Wat is Daimler Benz AG, wiens topman Jürgen Schre­mpp Fokker zijn love baby noemde, voor een be­drijf? Het conglomeraat is net zo mon­stru­eus als deze bee­ldspraak: een kaartenhuis op lemen voeten, wankel en log. Van de technologische syner­gie tussen auto’s (Mer­ce­des), elektro­nica (AEG) en vlieg­tuigen (Dornier en Fokker) is niets te­rechtgeko­men, zoals overigens in 1991 al werd voorspeld in bijvoorbeeld het Britse tijdschrift The Economist.

Schrempp is nu de bewindvoerder die Daimler in hoog tempo ontdoet van de verliesgevende acquisities van de laatste jaren. De gang van zaken on­der de vorige bestuursvoorzitter Edzard Reuter en diens opvol­ger Jürgen Schre­mpp, een protégé van Reuter, was en is trou­wens tamelijk onduits. En dat had mis­schien te denken moeten geven. Tot de memora­bele incidenten behoren de zelf­moord van de gepasseerde financi­le topman van Daimler, Ger­hard Liener, een aanvaring van Schrempp met de politie in Rome tijdens een wat heftig avondje stappen en nu dan de karakter­moord van Schrempp op zijn mentor Reuter: ‘Strategie kun je niet eten’ is nu zijn oordeel over Reuter, die het woord stra­tegie te pas en te onpas in de mond nam. Reuter zal waar­schijnlijk gedwongen moeten aftreden als commissaris (pr­esi­dent-commissaris mocht hij al niet meer worden). Hij wordt nu ver­guisd. Hij immers tuigde het ‘geïntegreerde technologie­con­cern’ op met ver­lies­ge­vende miljardenacquisi­ties. Zo diver­si­ficeerde hij autobou­wer Daimler tot het (geme­ten naar omzet) groot­ste in­dustrië­le conglomeraat van Europa.

 

Kannibaliseren

Wat voor soort bedrijf is Samsung, dat Fokker nu op de korrel heeft? Het is het soort conglomeraat dat Daimler had moeten worden – dat namelijk van alles maakt (behalve auto’s), dus waarom niet ook vlieg­tuigen? Samsung is alleen succesvoller wat de synergie betreft. Het enige minpunt is dat topmen­sen van het bedrijf momenteel in verband worden gebracht met een corrup­tieschandaal.

De laatste tijd heeft Samsung samen met de combine Daimler Aerospace/Fokker en het Chinese staatsbedrijf AVIC gestudeerd op een geheel nieuw vliegtuig met 120 stoelen voor de Aziatische markt, de FA-X, waarvan in elk geval een produktielijn in Korea zou moeten komen.

Te vrezen valt dat Samsung, net als Daim­ler, niet is geïnteresseerd in het voortbestaan van Fokker als zelfscheppende vliegtuigbouwer, maar slechts in het kannibaliseren van een complete voortbrengingsketen inclusief afzetkanalen en klan­ten (Fokker heeft in het marktsegment voor vliegtuigen tot 100 stoelen een aandeel van 40 %).

Toch zijn er twee pluspunten. Voor Daimler had het begin van de keten, het fundamentele onderzoek, de vliegtuigont­wikke­ling en de engineering, beduidend minder waarde dan het heeft voor Samsung. Het Koreaanse bedrijf is gezien zijn wel erg korte geschiedenis in de industrie waar­schijnlijk juist genteresseerd in toegang tot fundamentele kennis, dus niet alleen de kennis van Fokker maar van het gehele luchtvaartcluster: NLR, TU Delft, de Haarlemse HTS-vliegtuigbouw, het Hoofddorpse luchtvaartcol­lege (de voormalige MTS ‘Anthony Fokker’), de kennis voor het certificeren van nieuwe vliegtui­gen door de RLD en derge­lijke.

De Koreanen zijn de afgelopen maanden gepaaid met joint ventures door niet alleen Daimler, maar ook Boeing en McDonnell-Douglas. Met een eventuele verwerving van Fokker zou Samsung op eigen benen kunnen staan in de vliegtuigbouw.

Dat Fokker andermaal is overgeleverd aan een grote partner komt doordat het bedrijf zijn te verouderde, ondoelmati­ge en dus te dure produktiemethode te laat is gaan rationali­se­ren: daardoor verdampte Fokker’s onderhandelingspositie met Daimlerdochter Deutsche Aerospace in 1990 zodra de markt begon te kenteren.

 

Lijken in de kast

Nu is de produktie sterk gerationaliseerd. Het hele voortbreng­ingsproces is gestroomlijnd. De doorlooptijd is sterk ver­kort, het onderhanden werk is verminderd, waardoor Fokker een prima uitgangsposi­tie heeft ten opzichte van zijn directe concurrenten, nu de markt zich lijkt te gaan herstellen. Volgens de bedrijfskundige dr. Ard de Man, die dezer dagen aan de Erasmus Universiteit Rotterdam is gepromoveerd op onderzoek naar de doorloop­tijd­verkorting bij Fokker, gaat de tijd die nodig is om een vlieg­tuig samen te bouwen van oorspronkelijk 222 dagen naar 56 dagen.

Bovendien hebben de Duitsers ‘lijken in de kast’ opgeruimd die ze bij de overname aantroffen in de vorm van op de balans geactiveerde ontwikkelings- en aanloopkosten uit het verleden. Het merkwaardige is overigens dat, hoewel Daimler het probleem van de vervuilde balans vóór de overname al kende, men het slechts deels heeft opgelost. In de onderhandelingen met de Nederlandse overheid de afgelopen weken werd het probleem van de ten onrechte geactiveerde kosten gepresenteerd als ‘de ijsberg van 1,3 miljard’, alsof er onder de eerder opgeruimde lijken nog andere ten onrechte geactiveerde kosten waren aangetroffen.

Het is denkbaar dat Daimler het probleem met opzet deels ongemoeid heeft gelaten om daarmee geld los te peuteren van de Neder­landse overheid; de ongezonde balans zou het vertrouwen van potentiële klanten ondermijnen. Er moest vers kapitaal in Fokker van Daimler én de staat. De Nederlandse regering was echter niet te vermurwen. Fokker was immers onderdeel van het enorme machtige Daimler Benz, dus was die ongezonde balans geen probleem. Werkkapi­taal, daarover viel wel te praten.

 

Belangstelling

Maar hoe het ook zij, Fokker is mede dank zij Duitse inbreng aan­trekkelijker gewor­den voor overname: weliswaar zwaar onderge­kapitaliseerd, maar in elk geval met een redelijk gezonde kostenstructuur en een naar Duitse maatstaven enigszins ge­schoonde boekhouding.

Er is dan ook belangstelling van meerdere kanten: ook Bombardier toont interesse, een bij Samsung vergeleken klein transportmiddelenconcern (omzet 6 miljard dollar tegen Samsung’s 100 miljard dollar) dat wereld­wijd opereert. Bombardier bewijst dat er geen mammoetbedrijven met miljarden cashflow voor nodig zijn om iets te bereiken in de civiele vliegtuigbouw. Het maakte in een paar jaar twee Canadese en een Noordierse vliegtuig­bouwer (Canadair, De Havilland en Shorts) weer winst­gevend.

Fokker zou goed bij Bombardier passen (Bombardier’s dochter Shorts bouwt de Fokkervleugels), maar Samsung zou een breekijzer kunnen zijn in een lonkende, gigantische afzetmarkt in Zuidoost-Azië, met name in China.

De surséance biedt Daimler nog alle speelruimte om zijn deelne­ming in Fokker onder redelijke condities van de hand te doen om zo de verliezen te beperken. Komt het echter tot een fail­lissement, dan bepaalt de curator hoe de schuldeisers, waarvan Daimler de grootste is, wordt tegemoetgekomen. ‘Een surséance kan daarom heilzaam werken. Het is een adempauze voor de debiteur. Elke regeling is denkbaar’, zegt mr.dr. W. Wijting, van de faculteit Wijsbegeerte en Technische Maatschappijweten­schappen van de TU Delft.

In ieder geval heeft Fokker iets dat lijkt op een onder­handelingsposi­tie tijdens de adempauze waarvoor de over­heid nu heeft gezorgd met de kasgeldfournering plus plaatsen van enkele orders, samen goed voor 335 miljoen. Volgens de Volkskrant, die doorgaans zuinig oordeelt over de Nederlandse aspiraties in vliegtuigbouw, heeft Fokker de staat sinds 1945 ongeveer 3,2 miljard gulden gekost, waarvan 1,6 miljard gulden is terugbe­taald; dat is netto gemiddeld 32 miljoen gulden per jaar, vermoedelijk een prijs waarvoor veel landen graag in de vliegtuigbouw zouden stappen. Volgens Fokker is 80 % van eerdere leningen afbetaald en vloeide de laatste tijd 150 miljoen gulden per jaar terug naar de staat.

 

Uitdaging

Toch pleiten veel economen op grond van het gegeven dat er (ook in de toekomst) structu­reel geld bij moet, voor definitieve terugtrekking van de overheid uit de vliegtuigbouw. Prof.dr. A.J.M. Roobeek vindt dat echter een ‘veel te kwantitatieve benadering.’

Roobeek: ‘We kunnen het niet alleen hebben van kaas en bloemen. Aan een hoogwaar­dig technologisch cluster hangt een prijskaartje. Die prijs moet de Nederlandse samenleving opbrengen.’ Ze vindt daarbij wél dat de Nederlandse kennis op het gebied van vlieg­tuigbouw nog veel meer dan nu het geval is buiten de bedrijfs­tak te gelde gemaakt zou kunnen worden.

Volgens prof.dr.ir. Th. de Jong, verbonden aan het laboratorium voor Constructie en Materiaalontwikkeling van de faculteit Lucht- en Ruimtevaart van de TU Delft, heeft uiteindelijk de hele Nederlandse industrie meegeprofiteerd van de technologie voor het verlijmen van metalen delen die in de jaren vijftig bij Fokker werd ontwikkeld ten behoeve van de bouw van de F-27 Friendship.

Composietmaterialen uit de luchtvaart worden nu ook toegepast in tennisrackets en in de auto-industrie. Binnenkort rijdt er een lichtgewicht trailer voor vrachtwagens rond waarvan de constructie afkomstig is uit de Nederlandse vliegtuigindustrie. Ook de vezel Twaron van Akzo is oorspronkelijk mede door Fokker ontwik­keld.

De Jong: ‘De luchtvaart plaatst je steeds voor een uitdaging. Als je een stuk hout in het water gooit, blijft het wel drijven. Gooi je daarentegen een stuk hout in de lucht en wil je het daar houden, dan komt daar veel meer technische kennis voor kijken. In de VS is men begonnen met de ontwikkeling van een imaginair vliegtuig dat vijf keer zo snel als het geluid moet kunnen vliegen. De bedoeling daarvan is de techniek in de VS op een hoger peil te brengen. Of dat vliegtuig er ooit komt, is niet eens zo belangrijk, maar het gaat erom Amerikaanse technici te prikkelen om met oplossingen te komen voor inge­wik­kelde problemen.’

 

Dit artikel is tot stand gekomen met medewerking van drs. Angele Steentjes.

 

 

 

(CREDIT OPENINGSFOTO, STAANDE FOTO)

(Foto’s: ANP Foto, Amsterdam)

 

(BIJSCHRIFT PORTRET VAN SCHAIK)

Fokker in de problemen; op 23 januari maakt Van Schaikt bekend dat uitstel van betaling voor Fokker Aircraft is aangevraagd en verleend.

 

(BIJSCHRIFT VLIEGTUIGEN)

Het dilemma van Fokker bij een flauwe markt in beeld gebracht: ingepakte vliegtuigen staan op vliegbasis Woensdrecht tijden lang te wachten op kopers.

MegaPower, grootschalige energiewinning uit de natuur (De Ingenieur, nr. 20, 6 december 1995)

 

MegaPower_ill

 

Hier de PDF van het artikel in De Ingenieur: Megapower1995-2016

En hier onder twee websteks waar je er nog wat over vindt:

http://www.solar-tower.org.uk/megapowertower.php?PHPSESSID=5e87907ea6cf285f917966588c1c7c1f

http://www.lgwkater.nl/energie/megapower/megapower.htm

GESLOTEN SYSTEEM VOOR OPWEKKING VAN ENERGIE + BENUTTEN VAN TEMPERATUURVERSCHILLEN IN ATMOSFEER + VOLGENS NLR IS CONSTRUCTIE TECHNISCH MOGELIJK

 

MegaPower, grootschalige energiewinning uit de natuur

 

Toren van 5 km in Noordzee voor opwekken energie

 

Het principe van witte steenkool kan een zeer grootschalige toepassing krijgen. Plaats een gigantische toren in zee, laat gas via een pijp opstijgen tot 5 km hoogte, waar het condenseert en als vloeistof terugloopt tot zeeniveau, waar het door een turbine wordt omgezet in elektrisch vermogen. Onmogelijk? Nee, eerste studies rechtvaardigen nader onderzoek.

– Ing. R.M. van Ginkel –

– Frank Hoos –

– Ir. R.M. Krom –

– Drs.ir. P. van Summeren –

 

Ing. Van Ginkel en ir. Krom zijn werkzaam bij de Hoogovens Groep BV, Frank Hoos, bedenker van het MegaPower-idee, is werkzaam bij Seatec BV en drs.ir. Van Summeren is free-lance projectleider. Dit haalbaarheidsproject wordt gesteund door Novem. Ook Linde heeft aan het project deelgenomen.

 

 

Onder de naam MegaPower wordt sinds een jaar gewerkt aan een haalbaarheidsstu­die voor een grootschalig vermogensopwekkings‑ en conversiesysteem. Het voorstellingsvermogen moet hiervoor haast even groot zijn als het installatievermo­gen: 7000 MW in een installatie van tussen de 4 km en 7,5 km hoog­te. Het principe is dat van een gesloten systeem, waarbij een vloeistof verdampt op zeeniveau en op zeer grote hoogte bij de daar heersende lage temperatuur condenseert en terugge­leid wordt naar zeeniveau onder opwekking van vermogen. Het principe is vergelijkbaar met vermogensopwekking uit witte steen­kool: water verdampt, stijgt op, beregent de bergen en in de afdaling naar de zee worden waterkrachtcentrales ingezet voor het genereren van vermogen. De eerste studies tonen aan dat het project zowel fysisch als bouwtechnisch haalbaar kan zijn.

In het jaar 2050 naderen de gas‑ en olievoorraden hun einde, terwijl de wereldwijde energiebehoefte blijft stijgen. Er ontstaat dus behoefte aan grootschalig vermogen met andere bronnen dan gas en olie. Steenkool vormt op de lange termijn geen optie, want gezien het laatste rapport van de VN is wel vast komen te staan dat de klimaat­verandering daadwerkelijk in gang is gezet en dat CO2 daarin een voorname rol speelt. Dit noodzaakt te zoeken naar andere en betere oplossingen.

Met MegaPower komt een zeer milieuvriendelijke oplossing in beeld zonder enige CO2-produktie. Uitganspunt voor MegaPower is dat de temperatuur op grote hoogte (5000…8000 m) aanzien­lijk lager is dan op zeeniveau. Om hiervan gebruik te maken in een gesloten systeem zijn zeer grote installaties nodig, waarbij allerlei uitdagingen in de realisatie ervan opdoemen: de constructieve haalbaarheid, de thermodynamische voorwaar­den en de uitwerkingen daarvan.

Het fysische principe van een dergelijk geslo­ten systeem wordt verduidelijkt in afbeelding 1. Het systeem is in de Noordzee ge­dacht. Het bestaat uit een verdamper op zeeniveau, een stijgpijp voor het gas, een condensor op 5000 m hoogte, een pijp waardoor de vloeistof terugstroomt en een turbine op zeeniveau. De temperatuur op 5000 m hoogte is gebaseerd op de Nasa-standaard die aangeeft hoe de temperatuur met de hoogte varieert voor een standaardatmosfeer. De temperatuur van het zeewater komt overeen met de temperatuur van de Noord­zee in juni. De relatief hoge temperatuur is gunstig voor de verdamping van het medium. Het vloeibare medium wordt in de verdam­per een gas, stijgt op totdat het in de condensor komt, waar het condenseert. Daarna valt het terug tot op zeeniveau. De potentiële energie van de vloeistof in de condensor wordt in de turbine omgezet in elektrisch vermogen.

 

Rekenmodel

Om überhaupt berekeningen te kunnen uitvoeren moet het temperatuurverloop op grote hoogte en op zeeniveau bekend zijn. Aan het KNMI zijn derhalve gegevens gevraagd over het weer boven de Noordzee. Omdat het weer boven De Bilt niet signifi­cant verschilt van dat boven de Noordzee, zijn de weerdata van het jaar 1986 als uitgangspunt genomen. Deze zijn aangevuld met data van zeewatertemperaturen uit internationale klimaatatlas­sen. De data van het KNMI geven de hoogte van een drukniveau, de bijbehorende temperatuur en wind (in richting en snelheid).

De zeewatertemperaturen zijn af te lezen uit afbeelding 2. Dit tempe­ratuurverloop is een gemiddelde over tien jaar. Aanvullende gegevens van een bepaald meetpunt, de zeewatertempera­tuur bij Noordwijk in 1986, zijn in overeenstemming met die in deze afbeelding.

De temperatuur op 5500 m wordt weergegeven in afbeel­ding 3. Daarin is duidelijk te zien dat grote dagelijkse afwijkingen van de Nasa-standaard optreden.

In het MegaPower-project wordt uitgegaan van de meest ongunstige situatie. Hoe hoger de temperatuur is op 5500 m, des te slech­ter dat is voor conden­satie. In afbeelding 3 wordt door een ge­trokken lijn een ongunstig verloop aangegeven.

MegaPower heeft een rekenmodel ontwikkeld waarin het gewenste vermogen, de eigenschappen van de damp, de temperaturen op zeeniveau en op 5000 m hoogte zijn opgenomen. Dit model is gebaseerd op de aanname dat gedurende het transport van beneden naar boven geen warmte met de omge­ving wordt uitgewisseld. In het model is het verloop van de druk van een gas met de hoogte in een zwaartekrachtveld in rekening gebracht.

Bij uitwerking van dit model voor butaan, een gas dat ver­dampt bij ‑0,5 °C en dat een geringe verdampingswarmte heeft, blijkt dat voor een pijp met een doorsnede van onge­veer 50 m (of een bunde­l pijpen met in totaal een equivalent inwendig oppervlak) en 5000 m leng­te, een elektrisch vermogen van 7000 MW beschikbaar kan komen. De butaandamp stijgt op van het zeeniveau met een snelheid van ongeveer 50 m/s en komt op 5000 m hoogte aan met 20 m/s.

Uit de eerste berekingen bleek dat zuiver butaan niet kan voldoen, omdat er geen condensatie optreedt bij gestelde omgevingstemperaturen. Er zijn aan het butaan derhalve additieven toegevoegd. Deze condenseren tijdens het transport en geven hun warmte af aan het butaan. Daardoor komt het butaan met hogere druk dan voorheen aan bij de condensor en is condensa­tie mogelijk.

Door het geringe temperatuurverschil met de omgeving worden zowel de verdamper als de condensor buitenspo­rig groot. Bovendien betekenden de gegevens van het KNMI voor het MegaPower-project dat een systeem met butaan als medium vele maanden per jaar niet zou kunnen werken. Dit was aanleiding tot het zoeken van andere media en andersoortige systemen.

 

Medium

Het ontwikkelde rekenmodel biedt de mogelijkheid ook andere media in te voeren. Uit de eerste ervaringen was duidelijk geworden dat de tempe­ratuurniveaus de beperkende factoren waren, en niet zozeer de constructie. Daarom is een aantal stoffen onderzocht op hun mogelijke toepasbaarheid.

De minimaal vereiste temperatuur voor de verdamper moet altijd lager zijn dan de minimum zeewatertemperatuur van 4 °C (in de winter). Deze minimale temperatuur is bovendien afhan­kelijk van de con­struc­tie. In het onderzoek is de minima­le temperatuur van de verdamper op 0 °C gelegd. Voor de condensor geldt een soortgelijke beschouwing. Daar is de condensortemperatuur 6 °C hoger genomen dan de omringende lucht.

In de zomer is de temperatuur op 5000 m het hoogst en het temperatuur­verschil met het zeewater het klei­nst. Derhalve ligt bij die situatie de strengste systeem­eis. Daarnaast zijn er uit over­wegingen van stabiliteit en sterkte van de constructie nog eisen voor de drukken die mogen optre­den in het systeem. Het drukverschil met de omgeving mag niet te groot zijn en zeker niet lager dan de omgevingsdruk.

Een eerste keuze van mogelijke materialen leverde zeventien potentië­le kandidaten op. Ook de invloed van addi­tieven op deze materialen is onderzocht. Uit het reken­model blijkt dat met voornoem­de systeemeisen slechts drie potentiële materia­len over­blijven. Na invoering van andere voorwaarden zoals vrije convectie van de lucht in de condensor bleef alleen NH3 als medium over. Alhoewel het systeem binnen de gestelde temperatuurgren­zen functioneert, worden de con­densor en verdamper door gerin­ge temperatuurver­schillen en grote verdampingswarmte van NH3 relatief erg groot. Er zijn nog andere voorstellen gedaan, maar die vragen nog nadere uitwerking.

 

MegaPower-toren

Er is aan het NLR opdracht gegeven na te gaan of een dergelijke constructie technisch gerealiseerd kan worden. De Mega­Power-toren wordt getuid vanuit drie punten op zeeniveau. Er zijn twee versies (afbeelding 4, 5 en 6). Beide versies zijn opgebouwd uit modules die een kern van kunststof hebben met aan beide zijden aluminium. Enerzijds wordt de massa van de toren hierdoor beperkt, ander­zijds wordt de stijfheid groter. Bovendien is de protec­tie van belang, inwen­dig naar de gebruikte media, uitwendig naar meteorologische invloeden. In het MegaPower-project zijn dikten van 250 mm gebruikt.

In versie I zijn er om de 1200 m drijflichamen met water­stof. Er zijn dan vier drijflichamen die een elliptische vorm hebben. De inhoud van deze lichamen varieert met de hoogte. Beneden is de opwaartse kracht groot, dus kan de inhoud relatief klein zijn. Boven is de atmosferi­sche druk klein en moet het drijflichaam relatief een grotere inhoud hebben. Gedacht wordt aan langsdoorsneden van 360 m tot 900 m.

In versie II is het drijfvermogen geïntegreerd in de pijp. Deze wordt daardoor twee keer zo breed op zeeniveau. Ook hier speelt de atmosferische druk op grote hoogten een rol. Daardoor neemt de doorsnede toe tot 165 m op ongeveer 5000 m hoogte.

Het blijkt dat beide versies constructief mogelijk zijn. Bij een flinke storm is de statische deflectie bovenaan de pijp bij versie I (met vier drijflichamen) 344 m, bij de geïntegreerde versie slechts 57 m. Dat is voor beide ver­sies verras­send weinig. Nog meer indruk echter maakte het dynamische gedrag van beide versies. Windstoten van sinusvorm en beperkte duur werden aan de beide versies gegeven. Indien een windstoot op 4500 m wordt gegeven, is de deflectie maximaal 20 m respectievelijk 1 m.

De natrilling van beide ver­sies was ver­schil­lend. De dunne mast heeft veel eigenfre­quenties voor buigen onder de 0,1 Hz, terwijl de gedistribueerde versie begint bij 10 Hz. De reden voor deze kleine uitwijkingen moet gezocht worden in het enorme gewicht van de condensor. Deze functio­neert als stabilisator voor de pijp eronder.

Ook de tuidraden zijn technisch interessant. Zonder de toe­passing van nieuwe materialen zal het niet mogelijk zijn de toren te tuien. Nu blijkt dat doorsneden van 0,2 m2 van een modern materi­aal de spannin­gen kunnen opvangen, die ont­staan bij stormen en windsto­ten. De mechanische constructie is derhalve technisch moge­lijk.

De manier waarop de pijp opge­bouwd moet worden ligt daarmee nog niet vast. Binnen het MegaPower-pro­ject is een aantal ideeën bedacht om een pijp van een derge­lijke lengte op te bouwen. Uit verder onderzoek van het NLR blijkt dat con­structies van nog grotere dimensies technisch mogelijk zijn. Dit opent nieuwe wegen voor andere voorstellen.

Milieutechni­sche aspec­ten zijn voor MegaPower van groot belang. Men kan zich voor­stellen dat een puntvormige vermogens­winning zich heel anders gedraagt in het milieu dan een vermo­genswinning die over een groot oppervlak is verdeeld. Hiervoor zou een model ontwikkeld moeten worden voor zowel de condensor op grote hoogte als de verdamper in de zee. Vanwege de beperk­te duur en mogelijkhe­den van de huidige voorstudie kon alleen de haal­baarheid naar constructie en thermodynamische opzet bekeken worden.

 

Ten slotte

Door de opmerkelijke resultaten van de voorberei­dende haalbaarheidsstudie moet er een uitgebreid voor­ontwerp komen waarin alle aspecten uitge­werkt, geëvalu­eerd en afgewogen worden. Er zijn nog veel onuitgewerk­te mogelijkheden. De koppeling tussen techniek en techno­logie moet met grote harmonie tot stand worden gebracht. Voorbeelden daarvan geeft de natuur in grote diversi­tei­ten.

Het idee van MegaPower komt vanuit bewo­genheid met de natuur en moet daarom een eerlijke kans krij­gen. Zou het niet prachtig zijn als op economische verant­woorde wijze door middel van dit ‘luchtkasteel’ op grote schaal energie uit de natuur gewon­nen kan worden?

 

 

 

 

(BIJSCHRIFTEN)

(CREDIT BIJ DIA)

(Illustratie: Hans Pihl)

 

Afb. 1 Butaan/NH3-procescyclus; de vloeistof wordt door het zeewater verdampt en condenseert op grote hoogte; de druk en het debied van de vloeistofkolom worden in energie omgezet.

 

Afb. 2

 

Afb. 3

 

(VOLGENDE DRIE AFBEELDINGEN BIJ ELKAAR PLAATSEN)

Afb. 4

 

Afb. 5 Separate waterstof drijflichamen.

 

Afb. 6 Drijfvermogen geïntegreerd in de pijp.

 

TechnologieRating analyseert sterkten en zwakten (1995 12)

IMG_0142

 

1995 12

OMSLAGARTIKEL

 

FINANCIERING VAN INNOVATIEVE PROJECTEN + PRINCIPE VAN NIEUWE METHODE TECHNOLOGIERATING + AANTAL SUCCESVOLLE INTRODUCTIES VAN PRODUKTEN SLECHTS 17 %

 

TechnologieRating analyseert sterkten en zwakten

 

Rapportcijfer voor technostarters

 

Omdat veel innovatieprojecten mislukken, zijn banken huiverig deze projecten te financieren. De ING Bank is gestart met TechnologieRating, een methode om de levensvatbaarheid van innovatieve projecten te beoordelen. Sterkten en zwakten worden gehonoreerd met een rapportcijfer.

– Erwin van den Brink –

 

De auteur is redacteur van De Ingenieur.

 

 

‘Willie Wortel in zaken’ mag dan een karikatuur zijn van de ingenieur als startende ondernemer, ook zonder overdrijving geldt dat veel falende starters dachten dat hun techniek wel haar eigen markt zou maken; maar niet dat de markt tech­niek kan breken: het produkt was goed, maar helaas bleven de orders uit.

Drs. Maarten van Leeuwen van het Economisch Bureau van de ING Bank en drs. Ben Giesen van Senter, de uitvoeringsorganis­atie voor technologiebeleid van het ministerie van EZ, zijn allebei betrokken bij de Stich­ting TechnologieRating. Ze signa­le­ren in deze tijd, waarin inge­nieurs worden aangespoord om zelf te gaan ondernemen, nog immer een hiaat in de techni­sche opleidin­gen. De veronachtza­ming van de organisatorische en commer­ci­le aspecten in veel tech­nische ontwikkelingspro­jecten kan op dat gemis in de opleiding worden teruggevoerd.

Van Leeuwen: ‘Uit een onderzoek van de ING Bank onder ruim 150 innovatieve bedrijven blijkt dat het merendeel sterk technisch is ING bankgeoriënteerd. Ze variëren van eenmanszaken tot bedrijven met tientallen werkne­mers. De directeur heeft meestal een technische achter­grond. Hij weet goed hoe zijn pro­dukt technisch in elkaar moet zitten, maar heeft onvoldoende kennis van de markt en van be­drijfsvoe­ring.’

Giesen: ‘Als je kijkt naar de ingenieursstudies, zie je in die curricula te weinig bedrijfskun­de, met name over hoe je een businessplan op­stelt. In tegenstelling tot bijvoorbeeld Amerikaanse ingenieurs missen Nederlandse ingenieurs vaak marke­ting­kennis. Juist in een ontwikkelingsproces moet je de tech­niek en de marketing samen heel goed beheersen.’

‘In de methode TechnologieRating meten wij onder meer de manage­mentaspecten waarbij wij ons de vraag stellen of deze pro­jectleider niet alleen in staat is in technisch opzicht het project te realiseren, maar ook of hij de vaar­digheid heeft om de brug te slaan naar de commer­cie.’

En zo niet, wat dan? ‘Samenwerken met een verkooporganisatie. In een vroeg stadium de verbinding leggen tussen zo’n organisatie en deze onderne­mer.’

U zegt dan niet: ga eens een cursus volgen?

‘Nee, dat komt toch niet over bij zo iemand.’

 

Waarderingscijfers

Mede als gevolg van het tekortschieten in organisatorisch en commercieel opzicht is sprake van een hoog per­centa­ge mislukkingen onder (tech­no)star­ters. Maar ook bij bestaande bedrij­ven mislukkken veel innovatieprojecten. Dat maakt financiers huiverig om dergelijke activiteiten te financieren. Om meer zekerheid te krij­gen over de kans van slagen van een technolo­gisch inno­vatie­project is de methode Technolo­gieRating in ontwik­keling, enigszins naar analo­gie van de methoden waarmee in de financiële wereld de (financiële) kwali­teit van instel­lingen wordt ge­taxeerd en gewaar­deerd.

G­iesen: ‘Bij TechnologieRating brengen externe deskundigen door cijfermatige waardering van tientallen techni­sche, commerciële en manage­mentaspec­ten van een project, de sterkten en de zwakten van een project in kaart. De totaalscore zegt op zich­zelf iets, maar veel belang­rij­ker zijn de waarderingscijfers voor al die afzon­derlijke aspecten, omdat daarin heel precies wordt aangegeven wat buiten­staanders vinden van het project.’ Daarin onderscheidt een TechnologieRating zich in essentie ook van een businessplan, dat immers door het bedrijf zelf wordt opgesteld. Net als een busines­splan dient een TechnologieRating om financiering aan te trekken – door de zwakten zoveel mogelijk te elimineren. Maar een ondernemings­plan is niet, zoals een TechnologieRa­ting beoogt te worden, een objectief keurmerk.

Voor zover bekend zijn er in het buitenland wel financiële instellingen die instrumenten hebben om industriële investeringsrisico’s te taxeren, maar, aldus Van Leeu­wen, ‘die metho­den hebben veelal hoofdzakelijk betrekking op het vaststellen van de verkoop­baarheid van een produkt nadat de technische ontwikkeling is voltooid. Men gaat er vanuit dat de tech­nische ontwik­keling al geen probleem meer is. Er be­staat echter nog geen methode die kan worden toege­past voordat een technisch ontwikkelingspro­ject start. Factoren die wij bekijken zijn onder meer: wat voor organisatiestructuur gebruikt de onderne­mer, hoe ziet het plan van aanpak eruit, is alle exper­tise beschikbaar, hoe bedreigend is het produkt voor bestaande markten, is het produkt beschermbaar, heeft men toegang tot ken­nisnetwer­ken? Ook kijken wij naar de eigenschappen en de ervaring van de ondernemer en naar zijn of haar mate van gedrevenheid, een van de onder­delen die het moei­lijkst is hard te maken.’

 

Risicodiagnose

Zijn de banken vooral geïnteresseerd in de commerciële risico’s, de bedrijven kijken met name naar de technische risi­co’s. Binnen de tech­ni­sche be­drijfskunde is dan ook een aantal metho­den bekend om de risico’s in ontwikkelingsprojecten op te sporen, maar deze beperken zich doorgaans tot het identi­fice­ren van de techno­logi­sche knelpunten.

De elders in dit nummer van De Inge­nieur be­schreven methode van dr.ir. Joop Hal­man brengt daarnaast ook de organisatorische en commerciële risico’s in kaart. Ook de risicodiagnose­metho­de van de Stich­ting TechnologieRa­ting beoogt naast de techno­logi­sche eveneens de organisatori­sche en commerciële risico’s in kaart te brengen, maar deze methode is daarbij in het bijzon­der ontworpen voor brede toepassing, dus ook voor kleine, bestaande en startende, ondernemingen, terwijl Halman’s methode is ontwikkeld binnen een groot bedrijf (Philips) en daarna is uitgetest binnen grote gevestigde bedrijven als Vre­destein Banden en Lips Drunen.

Omdat bij starters het vinden van kapitaal een veel groter probleem is dan bij bestaande bedrijven, is de risicodiagnoseme­thode van de Stichting TechnologieRating niet zoals Halman’s RDM opgezet als primair een intern managementinstrument, maar als een manier voor technische leken, dat wil zeggen: banken, participatiemaatschappijen en de (subsidi­ërende) overheidsin­stellingen zoals Senter van het ministerie van EZ, om inzicht te krijgen in de risico’s van beoogde pro­jecten.

Giesen: ‘De methode verkeert nog volop in het ontwikkelingsstadium en ligt nog niet vast. Wat we zoeken is een manier om een innovatiepro­ject, een produkt- of procesontwik­ke­ling, op een ook voor buitenstaanders inzichtelijke manier te waarderen om zo voor de onderne­mer en de financier een beeld te scheppen van de verwachtin­gen die je over zo’n project zou mogen hebben zowel in technisch, commercieel als organisa­to­risch opzicht. Zo’n onderne­mer krijgt een spiegel voorge­houden van waar hij of zij mee bezig is, voor zichzelf en voor de financier. We denken dat er behoefte bestaat aan zo’n snelle scan van een technologieproject.’

Van Leeuwen: ‘Het idee is ontstaan binnen de ING Bank als uitvloeisel van het eerder genoemde onderzoek onder 150 bedrijven. Dat zijn dus bedrijven die al ervaring hadden met innovatieprojecten. Het onder­zoek had als doel meer in­zicht te krijgen in het proces waar­langs innovatie tot stand komt, in het bijzonder bij kleinere bedrijven. In dit onderzoek zijn ruim 1000 innovatieprojecten gevolgd. Wat naar voren kwam was dat heel weinig projec­ten uit­mon­den in succes­volle intro­ductie op de markt: 17 %. Welis­waar komt dat over­een met percentages die worden gevon­den in bui­ten­landse onder­zoeken, maar in Nederland was zo’n onder­zoek nog niet eerder uitge­voerd.’

 

Blinde vlek

Voor mislukkingen zijn volgens Van Leeuwen doorgaans twee hoofdoorzaken aan te wijzen. De ondernemer vraagt zich niet alleen onvoldoende af hoe hij of zij het produkt tezijnertijd moet gaan verkopen, ook blijkt de geldbron vaak voortijdig op te drogen. ‘Ze beginnen met eigen kapitaal. Als die bron voortijdig opdroogt, bloedt het project dood. Maar banken hebben eigen­lijk niet de kennis in huis om in het bijzonder de technische en commerciële haalbaarheid van innovatieprojecten in een vroeg stadium op zijn waarde te kunnen schatten.’ Financiers eisen voor een investering in technologische innovatie niet meer zekerheid dan voor een investering in pakweg zakelijke dienstverlening. Alleen vinden financiers de risi­co’s van technologische inno­vatie moeilijker in kaart te brengen.

Van Leeuwen: ‘Een bankier heeft om de risi­co’s van een technostarter te kunnen beoordelen meer kennis nodig dan wanneer het gaat om die van een zakelijke dienst­verlener.’ Techniek blijkt, aldus Van Leeuwen, een beetje een blinde vlek te zijn in de financiële wereld. ‘Technologie­Rating is dus bedoeld om aanvullende informatie te verschaffen op die terreinen waar de financier niet de kennis en het netwerk heeft om zich snel een beeld te kunnen vormen van de kwaliteiten en de risico’s van innovatieprojecten.’

Giesen: ‘Het is voor een bankier gemakkelijker om al langer bestaan­de ondernemin­gen te financieren op basis van de balans, ver­lies- en winstreke­nin­gen. Dan is het de onderneming die wordt gefinancierd en niet het project. Naarmate de onderneming kleiner is en het project groter, wordt de financierings­vraag meer in verband gebracht met de kans van slagen van het pro­ject en dan wordt het voor de ondernemer noodzakelijk zijn omgeving ervan te over­tuigen dat hij met iets goeds bezig is. Om buiten de standaardratio’s te gaan financieren is voor de banken een ingrijpende beslis­sing.’

 

Octrooi

Giesen: ‘Uit een evaluatie van de pro­jecten die Senter heeft gefinancierd, blijkt dat van de mislukkingen 30…40 % een techni­sche oorzaak heeft en dat 60…70 % berust op een verkeerde inschat­ting van de marktvraag of betrekking heeft op een produkt dat niet de specifi­caties van de markt volgt.’

‘Er zijn ons ook voorbeelden bekend van projecten die technisch waren geslaagd en waar ook wel enige vraag naar was, maar niet op de wijze waarop de kleine ondernemer het aanbood. Bijvoorbeeld omdat de afnemers zich willen verzekeren van kwali­teit, nazorg, onderhoud, tot in lengte van jaren. Beginnende makers van kapitaal­goederen kunnen dat vaak niet direct aanbieden en garanderen, waardoor de feitelijke vraag sterk achterblijft bij de potentiële vraag en de onderne­mer dan na een jaar of een paar orders moet stoppen. Dit geldt niet alleen voor eindproduk­ten, maar ook voor compo­nenten: afnemers willen in de toekomst verzekerd zijn van leveranties.’

Is dat probleem wel op te lossen? Is het niet juist typerend voor het MKB dat het vaak starters zijn die hun continuïteit nog niet hebben kunnen bewijzen?

Giesen: ‘Het is wel eens op te lossen door een verbintenis aan te gaan met gevestigde bedrij­ven voor de produktie of afzet. De oplossing ligt soms in samenwerking.’

Behalve gebrek aan zekerheid over het (voort)bestaan is kennisbescherming een andere zwakke plek in veel prille bedrij­ven. Een voor relatief veel geld ontwikkeld produkt kan blijken al te bestaan, geoctrooieerd of niet. Wie omgekeerd ver­zuimt zijn produkt goed te octrooieren, loopt het risico dat een concurrent de markt binnen de kortste keren afroomt.

Van Leeuwen: ‘Met name voor kleine bedrijven die hun investering in ontwikkeling snel moeten kunnen terugverdienen, is het een hele vooruitgang dat zij dank zij de nieuwe Octrooi­wet heel snel octrooi kunnen krijgen.’

Giesen: ‘Door met behulp van een TechnologieRating inzicht te krijgen in projectrisico’s, verdeeld naar aspecten als bijvoorbeeld managementkwaliteiten, kennisbescherming, mate van innovativiteit van het project, het onderscheidend vermogen van het produkt en de continuïteit van het bedrijf, ­en door die risico’s vervol­gens te verminde­ren, kun je als bedrijf de financie­ringsbereid­heid vergroten, al­thans als de finan­ciers gaandeweg vertrou­wen krijgen in de metho­diek.’ Net als bij de financiële ra­tings zal de methode een bepaalde reputa­tie moeten opbouwen. Zo’n reputatie bete­kent nog geen water­dichte garantie, maar volgens Giesen ‘wel een stevi­ge indica­tie van de haal­baarheid van een pro­ject’.

Giesen: ‘De financiële wereld kan door kennis te nemen van de risico’s wat meer opschuiven in de richting van het risico nemen. Zolang financiers niet kunnen omgaan met technische risico’s blijven zij terug­houdend. Naarmate het inzicht dank zij Tech­nologie­Rating groeit, zal de investeringsbereidheid toenemen. Dat is belangrijk voor de on­dernemer, maar ook voor de bank voor wie de onderne­mer een toekomstige klant is.’

 

 

 

 

 

(BIJSCHRIFTEN)

(BIJ OPENINGSFOTO 1 OF 2 + CIJFERLIJST)

Bij TechnologieRating wordt een groot aantal aspecten van de thema’s ’technologie’, ‘commercie’ en ‘management’ van een bedrijf dat een produkt wil lanceren, op hun waarde geschat.

(Foto: London Pictures Service, Den Haag)

 

 

(QUOTE BIJ PORTRET)

‘Banken hebben niet de kennis in huis om de technische en commerciële haalbaarheid van innovatieprojecten in een vroeg stadium op zijn waarde te schatten’, drs. Maarten van Leeuwen, ING Bank

 

 

(QUOTE BIJ PORTRET)

‘Van mislukte innovatieprojecten berust 60…70 % op een verkeerde inschatting van de marktvraag’, drs. Ben Giesen, Senter

(Foto: Michel Wielick, Amsterdam)

 

 

(BIJ 4 GRAFIEKEN)

Technologievolgers: bedrijven met 10…500 werknemers van wie 1 of 2 in R&D; kleine technologiegedreven bedrijven: 10…100 werknemers van wie meer dan 5 % in R&D; grote technologiegedreven bedrijven: 100…500 werknemers van wie meer dan 5 % in R&D.

 

 

 

 

 

(KADER)

Stichting TechnologieRating

 

De Stichting TechnologieRating bestaat sinds januari 1995. Deelnemers zijn naast de ING Bank en Senter de Atlas InvesteringsGroep, het Bureau Industriële Eigendom (BIE), Innovatie­Centra Netwerk Nederland (ICNN), de Nederlandse Onderneming voor Energie en Milieu (Novem), Neder­landse Organisatie voor Toegepast Natuur­wetenschappelijk Onderzoek (TNO) Specialis­tisch InnovatieCentrum voor Uitvindingen ID-NL, de Stichting voor Technische Wetenschappen (STW) en het Vlaams Instituut voor de bevordering van het Technisch-Wetenschappelijk Onder­zoek in de Industrie (IWT).

De deelnemers steunen met geld en kennis de ontwikkeling van een methode om innovatieprojecten in kleine en middelgrote bedrijven te toetsen op hun commerciële haalbaarheid. De verdere ontwikke­ling gebeurt momenteel met behulp van twintig proefprojecten nadat aan de hand van vijf zogenaamde ‘droogzwem­projecten’ een eerste versie, een prototype van een procedure voor TechnologieRa­ting, is opgesteld. Dit prototype is zeer recentelijk voltooid.

Op dit ogenblik lopen acht van de twintig beoogde proefprojecten, die naar verwachting voor de zomerva­kanties worden afgerond. In september start de tweede serie proefprojecten. Aanmelden voor de proef kan bij: Secretariaat Stichting Tech­nologieRa­ting, Bijlmerplein 888, Lokatie HA 02.06, 1102 MG Amsterdam, tel. (020) 563 44 07/44 10, fax (020) 563 95 05/44 09.

De procedure is nu als volgt. Een ondernemer vraagt een rating bij het secretariaat. Na toelating tot de proeffase op grond van een aantal criteria (de vinding moet binnen ongeveer drie jaar op de markt worden gebracht, is technisch complex, vereist financie­ring, voldoende leereffect voor het toetsen van de methode) moet de ondernemer een uitgebreide vragen­lijst invullen. Vervolgens ondergaat de ondernemer een gestructureerd interview waarin vragen worden gesteld rond drie vaste thema’s: tech­nologie, com­mercie en manage­ment. Het verslag van dat interview gaat terug naar de ondernemer. Die kan nog eens zeggen of alle gegeven naar zijn overtuiging kloppen en of het gesprek juist is weergegeven. Dan gaat het verslag eventueel aangevuld met wat persoonlijke notities van het interviewteam naar een ratingcommissie, een panel van deskundigen, een jury. Eventueel worden eerst nog deskundigen geraadpleegd als de verzamelde informatie over bepaalde aspecten twijfel laat bestaan – een second opinion. Die jury waardeert binnen elk van de drie thema’s een aantal aspecten met een cijfer. Elk thema krijgt uiteindelijk een eindscore die het ongewogen rekenkundige gemiddelde is van de scores op de aspecten. De procedure neemt ongeveer 6 weken tot 8 weken in beslag.

 

 

 

 

 

(KADER)

Champignonkweker wordt machinebouwer

 

Aardappelen, groenten, fruit, potplanten maar ook brood worden vervoerd in zogeheten fusten: kratten, rekken of houders. Hout en karton worden vervan­gen door kunst­stof, omdat dit is te reinigen met het oog op hergebruik. Er bestaan reini­gingsmachi­nes, maar die hebben een groot vloerop­pervlak, een lage capa­citeit en boven­dien is de bedie­ning zeer arbeidsintensief. De heer en mevrouw Piels uit Kerkdriel heeft een champignon- en fruitkwekerij en zag om zich heen de behoefte ontstaan aan een compacte, gemak­ke­lijk te bedienen reinigingsmachine.

Mevrouw A. Piels: ‘De veilingen reinigen fusten al. De groothan­del is er inmid­dels ook mee begonnen, mede onder druk van grootwinkelbe­drij­ven zoals Ahold. We zijn gaan praten met bedrijven. Al­doende zie je zo’n markt echt gestalte krijgen.’

‘De huidige reinigingsmachi­nes bestaan uit een transportband waarover kratjes stuk voor stuk achter elkaar door een sproeitunnel gaan. Als de bediening, vanwege het handmatig op- en afstapelen van de fusten al niet zeer ar­beidsintensief is, dan geldt toch zeker het grote ruimtebeslag als nadeel. Bedrijven die straks fusten moeten gaan reinigen, willen dat op een zo klein moge­lijk vloerop­pervlak doen.’

‘Wij hebben een nieuw concept ont­wikkeld. Bij onze machine wordt een laag fusten in één keer van de stapel op de pallet in de machine geplaatst. Die heeft een universeel spreidingsmechanisme waarmee de fusten van elkaar af worden gehaald, zodat ze aan alle kanten goed toegankelijk zijn voor de sproeiers. In hetzelfde proces wilden we dat de pallet zou worden gereinigd.’

‘Onze ideeën hebben we laten uitvoeren door het ingenieursbureau Mechanema in Eindhoven. We wilden niet heel veel elektro­nica vanwege de vochtige omgeving en de agressieve reinigings­midde­len. In 1992 is Mechanema begonnen met het ontwerpen van de machi­ne. Er zit een aantal innovaties in waarvan we van te­voren niet wisten of ze zouden werken. Daar hebben we nu Eu­ropees octrooi op gekregen.’

‘Via de ING Bank in Eindhoven werden we gewezen op Techno­Rating. Is het niets om jullie aan te melden voor het proefpro­ject, kregen we te horen, want jullie zullen straks ook door­gefinan­cierd moeten worden en dan heb je een middel nodig om voor de financier inzichtelijk te maken waar nu het risico in zit. We hebben een partij gevonden in de Gelderse Ontwikkelings­Maatschappij en voor het technisch ontwikkelingskrediet hebben we aangeklopt bij Senter.’

‘Het technologisch grootste risico hebben we helemaal aan het begin van het ontwikkelingsproces aangepakt. Dan heb je nog niet zo veel geld geïnvesteerd, dat je kwijt bent indien dat pro­bleem onoplosbaar blijkt en je het hele project moet afblazen. Het ging om het automatisch samenbrengen van fusten tot een laag en het stapelen van lagen op de pallet na reiniging. Dat kon een pro­bleem zijn doordat fusten soms vervormd of bescha­digd kunnen zijn, waardoor een eenmaal uiteenge­nomen stapel fusten niet meer opnieuw gestapeld kan worden.’

‘In Eindhoven hebben we de machine afgelopen november officieel gepresenteerd aan vertegenwoordigers van het plaatselijke innovatie­centrum, de Kamer van Koop­han­del, Senter en de bank. Daarbij waren de mensen van Tech­nologieRa­ting aanwezig om de presen­tatie te beoordelen: of je in staat bent om je produkt aan de man te brengen, hoe je bent als persoon.’

Een paar weken geleden kreeg Piels de definitieve versie van het rap­port. ‘Wat dan wordt aangehaald is: het risico van een klein bedrijf. Je hebt eigenlijk iets heel fraais in handen, maar toch ben je als partij niet aan­trekkelijk omdat je klein en onbekend bent en de klant nog niet durft te vertrouwen op je continuïteit. Je zoekt dus aanslui­ting bij een grotere partij. Met een grote industri­le ­partner hebben we het produktietraject en de after sales afgedekt, niet de marketing. Die doen we groten­deels zelf. Onze marketing is buitengewoon positief gewaardeerd door Tech­nologieRating.’

Toch vindt zij deze risicodiagnosemethode niet zaligmakend: ‘Alle waarderingen moeten geobjectiveerd worden, terwijl subjectieve zaken vaak het verschil tussen falen of succes bepa­len: de persoonlijkheid van de ondernemer bijvoorbeeld, zijn gedrevenheid.’

Outsourcing:Weloverwogen strategie nodig bij uitbesteden van werk Uitbesteden om uit te munten (1995 9)

outsourcing

 

 

1995 9

OMSLAGARTIKEL

 

HISTORISCHE ONTWIKKELING VAN UITBESTEDEN + STORK: VAN KAPITAALGOEDERENBOUWER TOT ‘ENGINEERINGCONCERN’ + KOSTENVERLAGING NIET MEER BELANGRIJKSTE REDEN

 

Weloverwogen strategie nodig bij uitbesteden van werk

 

Uitbesteden om uit te munten

 

Het kan slecht zijn voor het ego van een bedrijf, maar vaak is uitbesteden een goede strategie. Zelf moet je datgene blijven doen waarin je uitmunt. Daarom maakt Ford gebruik van de kennis van Mazda, gebruikt Boeing de windtunnel van de concurrent, en laat Stork technisch tekenwerk verrichten in India.

– Erwin van den Brink –

 

De auteur is redacteur van De Ingenieur.

 

 

Een bedrijf dat alleen maar uitbesteedt om kosten te kunnen besparen is ten dode opgeschreven, zeggen de Amerikaanse bedrijfsadviseurs James Welch en Ranganath Nayak van Arthur D. Little. Maar als in een bedrijf te veel middelmatige processen en activiteiten het zicht ontnemen op de kernvaardigheden, dat wil zeggen de aspecten van het produkt of de dienstverlening waarin het bedrijf in de ogen van de klant met kop en schouders uitsteekt boven alle anderen, dan zal het bedrijf ook op den duur het loodje leggen. Daarom moet het besluit om iets zelf te doen of uit te besteden zijn gebaseerd op een weloverwogen strategie: waarin onderscheiden wij ons?

Uitbesteden dient allang niet meer alleen tot flexibilisering en verlaging van de kosten (via de schaalvoordelen van toeleveranciers) en evenmin alleen tot verhoging van het rendement op geïnvesteerd vermogen ‑ met uitbesteding worden activa afgestoten. Dat zijn de klassieke voordelen waarmee het verschijnsel in de jaren vijftig terrein won op de totale verticale integratie van Henry Ford (van ijzererts tot A‑model).

Volgens Welch en Nayak vermindert historisch gezien het loonkostenvoordeel van fabricage in het buitenland naarmate die landen een moderne industriële basis ontwikkelen. Anderzijds maakt een naar verwachting blijvend lage dollarkoers, dus harde gulden, het voor een bedrijf noodzakelijker te produceren in de afzetmarkten, vooral als dat dollareconomieën zijn.

Uitbesteden dient ook niet meer alleen tot vermindering van het kapitaalbeslag, het toegang krijgen tot kennis van leveranciers of zelfs niet meer alleen tot het aanwenden van de eigen bedrijfsmiddelen voor de activiteiten die de meeste waarde toevoegen aan het eigen produkt, zoals de bekende econoom Michael Porter betoogt.

Nee, uitbesteden staat steeds meer in dienst van het laten uitmunten van het bedrijf in zijn kernactiviteiten. De voortbrengingsprocessen zijn zo complex geworden dat bedrijven steeds minder goed in staat zijn die volledig te beheersen. Zij moeten een aantal activiteiten die strategisch niet essentieel zijn voor het produkt, afstoten naar leveranciers. Niet alleen ‘branchevreemde’ diensten zoals catering en wagenparkbeheer en ondersteunende diensten zoals personeelsadministratie en bedrijfsarts worden afgestoten, maar het produktieproces zelf wordt opgeschoond, ontdaan van al die stappen die toeleveranciers beter doen.

 

Concurrerende leveranciers

Maar strategisch uitbesteden betekent meer. In het verleden is vaak kortzichtig uitbesteed: in plaats van ingewikkelde of arbeidsintensieve processen te automatiseren werden ze uitbesteed aan leveranciers die uiteindelijk geduchte concurrenten werden. Dit gebeurde in de consumentenelektronica, machinebouw, halfgeleiders en kantooruitrusting. Leveranciers integreerden voorwaarts door te doen wat de afnemer had nagelaten, door eerst processen die aan hen waren uitbesteed te automatiseren en vervolgens hun afnemer te verslaan.

Dat verschijnsel is niet nieuw. Dodge begon als leverancier van motoren aan Ford en leerde zo auto’s maken. Doordat de Amerikanen besloten in de late jaren veertig radiotoestellen te laten assembleren in Japan, verloren zij de markt voor radio’s doordat Japanners goedkoper en beter complete radio’s konden ontwikkelen. Omgekeerd slaagde Lifeline Systems, een Amerikaanse maker van communicatieapparatuur speciaal voor noodsituaties, er in 1991 in al zijn uitbesteed werk terug te halen doordat het de eigen produktiviteit met grote sprongen had weten te verhogen.

Bij de Amerikaanse motorenfabrikant Cummins Engines beschrijft de bedrijfskundige Ravi Venkatesan een systematische afweging door alle qua fabricagemethode verwante componenten onder te brengen in produktfamilies. Cummins classificeert vervolgens die families in termen van fabricagekennis, kapitaal dat nodig is voor kwaliteit van wereldstandaard, de tijd en menskracht die nodig zijn om de vaardigheid in stand te houden, het investeringsrendement en het aandeel in het totaal onderhanden werk. Waar de interne toelevering 15 % of meer duurder was dan die van een leverancier, kregen de betrokkenen een jaar de kans om de produktiviteit te verhogen. Van de elf produktfamilies kwamen er aanvankelijk zeven in aanmerking voor uitbesteding, maar na achttien maanden waren dat er nog maar twee.

Xerox vraagt zijn directe concurrenten hoeveel zij uitgeven voor een bepaald produkt en geeft zelf ook openheid van zaken. Beiden kunnen daarmee hun voordeel doen. Lifeline en Xerox doen aan benchmarking, het ijken van de efficiëntie van activiteiten in eigen beheer met het laten verrichten buiten de deur.

 

Kerncompetentie

Bij het selecteren van de activiteiten die het bedrijf nog zelf wil blijven doen, moet het management volgens Welch en Nayak vooral kijken naar de technologische voorsprong en de ontwikkelingsmogelijkheden. En bij een kennisachterstand geldt dan het adagium: dichten we de kenniskloof of ’trekken we de stekker eruit’, besteden we het uit?

Aan deze notie ligt een analyse van de economische ontwikkeling ten grondslag die erop neer komt dat het in de jaren zestig draaide om prijsconcurrentie, in de jaren zeventig om kwaliteitsconcurrentie, in de jaren tachtig om doorlooptijd, levertijd en produktimago en in de jaren negentig om technologische innovatie.

In de jaren tachtig bepaalde volgens Porter grosso modo de marktomgeving de strategie. Het bedrijf is een portfolio van produkt-marktcombinaties. Tot nu toe dachten we dat de markt of bedrijfstak de winstgevendheid bepaalde. Maar in dezelfde markt zie je winstgevende naast zeer verliesgevende bedrijven. Die verschillen zijn vaak groter dan tussen verschillende markten of bedrijfstakken. De manier om dat te verklaren is dat de unieke, niet te kopiëren bedrijfsmiddelen de basis zijn voor concurrentievoordeel en de winstgevendheid bepalen.

Deze resource based view, de ‘bedrijfsmiddelenoptiek’, is geen nieuw concept. In 1959 beschreef E.T. Penrose in The theory of growth of the firm de organisatie als een verzameling bedrijfsmiddelen. De bedrijfskundigen Pralahad en Hamel schrijven in hun boek Competing for the future dat bedrijven zich moeten bevrijden van de tirannie van de afzetmarkt. Ze kunnen hun eigen markten creëren als ze maar ambitieus en creatief genoeg zijn. Het denken in produkt-marktcombinaties is door de voortdurend veranderende marktomgeving geen stabiele basis meer voor een strategie; bedrijfsmiddelen en kennis/vaardigheden zijn dat wel.

De samenstellers van het boek Strategic Sourcing, een onderzoekproject van de Erasmus Universiteit Rotterdam, benadrukken dat de markt als leidraad en de bedrijfsmiddelen als leidraad geen tegenstrijdige, maar elkaar aanvullende strategieën zijn. Kerncompetentie is immers een relatief begrip. Het bedrijf begint de externe bedreigingen in kaart te brengen en zoekt daar competenties bij, kiest positie. De al aanwezige competenties kunnen kansen creëren die nog niet eerder waren onderkend.

 

Produktieketen

Veel bedrijven definiëren datgene waar zij van oudsher succesvol in zijn geweest als hun kerncompetentie, zoals automaker Honda in het (zelf) bouwen van motoren en aandrijftreinen. Bij Honda begon het met het maken van bromfietsmotoren.

Bij Stork daarentegen leidde de zoektocht naar de eigen expertise vanaf begin jaren tachtig tot een ingrijpende gedaanteverandering: van een traditionele bouwer van zware kapitaalgoederen (ketels, turbines, dieselmotoren) tot een moderne systeemarchitect en ‑integreerder annex industriële dienstverlener. Stork noemt zich nu ‘engineeringconcern’.

‘De zware kapitaalgoederensector werd te riskant. De Nederlandse thuismarkt bleek te klein. De internationale klantenbasis bestaat uit (semi‑)overheidsbedrijven die afhankelijk zijn van sterk schommelende budgetten. Draagvlakvergroting voor Stork Ketels (met Deutsche Babcock) en Stork Diesel (met Wärtsila) bood Stork als geheel onvoldoende soelaas’, zegt H.A.D. van den Boogaard, plaatsvervangend voorzitter van de raad van bestuur van Stork. ‘Wat is de functie die je voor een klant wilt en kunt vervullen. Als je dat goed hebt omschreven, wordt ineens een stuk helderder wat de activiteiten zijn waarmee je geld kunt verdienen en wordt het dus ook duidelijker wat je niet meer zelf hoeft te doen.’

Bij Stork beseft men naast het belang van ‘weten waarin je uitmunt’ ook het belang van supply chain management: nauwe samenwerking binnen de toevoerketen vanwege toenemende concurrentie. Stork bevindt zich als spin in een web van dochterbedrijven, deelnemingen, joint ventures en leveranciers. De scheidslijnen tussen bedrijven in een produktieketen vervagen.

‘In toenemende mate worden binnen organisaties die management naar het uitvoeringsniveau brengen, financiële verrekeningsmechanismen, klant-leverancierrelaties, toegepast om allerlei interne kosten zichtbaar te maken. Op het moment dat een winstverantwoordelijk bedrijfsonderdeel bijvoorbeeld investeringen sneller wil afschrijven dan de rest, moet er eigenlijk een eigen balans komen. Dan zit je al heel dicht bij het verzelfstandigen, uitbesteden van die activiteit’, zegt ir. J.G.M. Kerkhoff van Coopers & Lybrand Management Consultants. ‘Omgekeerd raken toeleveranciers steeds meer vervlecht met hun afnemers. Bijvoorbeeld doordat de leverancier niet alleen bevoorraadt, maar ook de voorraadadministratie van zijn afnemer bijhoudt door in diens voorraadsysteem te kijken.’

Niet bedrijven, maar voortbrengingsketens gaan met elkaar concurreren. Dit betekent dat bedrijven voor een specifieke uit te besteden activiteit niet meer wisselend van alternatieve leveranciers gebruik maken, maar van vaste leveranciers. De leverancier wordt steeds meer een verlengstuk, een partner, van de afnemer. In die verhouding kunnen leverancier en afnemer het werk binnen hun keten doelmatig herverdelen. Als dat leidt tot een grotere afzet van het eindprodukt, zal de eindafnemer een deel van zijn extra toegevoegde waarde via een bonus‑malussysteem doorgeven aan zijn leverancier.

 

Insourcing

Strategic sourcing kan ook leiden tot inbesteden, insourcing, door het verwerven van bedrijven. Als gevolg van het herdefiniëren van de kerncompetentie ziet Daimler Benz zich niet meer als autobouwer, maar als maker van technologie voor transportsystemen: auto’s, vliegtuigen, schepen, treinen.

Kerncompetentie houdt vaak in dat producenten van goederen en diensten conceptueel gaan denken en componenten en detail engineering steeds meer als een commodity beschouwen. Zo laat Stork technisch tekenwerk verrichten in India, het land waar het ook pompen en ventielen, giet‑ en smeedwerk vandaan haalt. Anderzijds heeft Stork vaardigheden inbesteed die niets met de traditionele werktuigbouw te maken hebben, zoals voedingsmiddelentechnologie. Van den Boogaard: ‘Als je machines maakt om flessen met whisky te vullen, moet je ook iets van whisky weten. Onze expertise wordt breder, het opleidingsniveau hoger.’

Voor bedrijven zoals Stork betekent kerncompetentie het zich steeds meer toeleggen op het beheersen van concepten, het formuleren van functionele eisen of randvoorwaarden van een systeem zoals een verpakkingslijn of een textieldrukproces. Stork helpt zijn klant ook met het ontwerpen van de dessins die gedrukt moeten worden door daarvoor een CAD‑systeem te ontwikkelen, en met het drukken zelf door apparatuur bij te leveren voor het bereiden van bepaalde kwaliteit en kleur drukinkt. Hoewel Stork de daarvoor benodigde kennis ontwikkelt, gebeurt het feitelijke maken steeds meer buiten de deur.

‘De graad van achterwaartse integratie bij Stork is in de systemen nog steeds heel behoorlijk, zo’n 50 %, waar in de autoindustrie nog slechts 25 % zelf wordt gefabriceerd, maar die wordt elk jaar een paar procentjes minder’, aldus J. Snijder, directeur concerninkoop bij Stork. ‘In steeds meer landen is wegens gebrek aan voldoende harde vulata alleen toegang tot de markt te krijgen door lokale participatie.’ De voorwaartse integratie wordt daarentegen voortvarend ter hand genomen. ‘Om dichter bij de klant te komen zijn we bezig een agentennetwerk in Mexico over te nemen’, aldus Van den Boogaard. In‑ en uitbesteden gaan dus hand in hand.

 

Psychologische barrière

Op een hoger abstractieniveau is kerncompetentie vaak een thema dat als een rode draad door alle activiteiten heenloopt en in alle produkten is terug te vinden, zoals bij Philips de kennis over licht. Aanvankelijk werd die kennis alleen belichaamd in de lampenfabricage, die overigens leidde tot radio‑ en kathodestraalbuizen en aldus tot produktie van radio’s en televisies. Maar het is geen toeval dat Philips een met behulp van (laser‑)licht afleesbare informatiedrager, de compact disc, ontwikkelde en zich stortte op lasertechnologie voor datatransmissie. Voor Sony is de ervaring in het miniaturiseren de kerncompetentie. Voor Apple Computers is het de gebruiksvriendelijkheid, voor Honda de kennis op het gebied van motoren en aandrijftreinen en voor 3M kennis op het gebied van band.

Niet altijd kunnen activiteiten die niet tot de kerncompetentie behoren, worden uitbesteed. Het handhaven van hygiëne behoort in de meeste bedrijven niet tot de kernactiviteiten. Er zijn tegenwoordig veel goede schoonmaakbedrijven. Ook in een ziekenhuis is de kernactiviteit niet hygiëne, maar het beter maken van mensen. In dit geval is hygiëne daarbij echter essentieel. Gebrek aan hygiëne kan ernstige gevolgen hebben voor de reputatie van het ziekenhuis. Zo besteden bedrijven vaak ondersteunende diensten niet uit, omdat die erg bepalend zijn voor de betrouwbaarheid en het imago van het produkt.

Vooralsnog geldt dat ook voor automatisering. ‘Bij autoleasen is de dienst goed ontwikkeld en geüniformeerd, zodat je aanbieders gemakkelijk met elkaar kunt vergelijken. Daarom kun je met het wagenpark ook de kennis over wagenparkbeheer uitbesteden’, aldus Kerkhoff van Coopers & Lybrand. ‘Met automatisering kan dat nog niet, omdat de dienstverlening nog niet is geüniformeerd. Doe je met de automatisering ook de kennis daarover de deur uit, dan loop je het risico dat je een kat in de zak koopt omdat diensten niet geüniformeerd en aanbieders niet vergelijkbaar zijn.’

‘Nu worden automatiseringssystemen steeds specialistischer gebruikt, maar de systemen zelf zijn steeds minder gespecialiseerd. Door de dalende kosten wordt het goedkoper alle mogelijkheden er meteen maar standaard in te stoppen dan om een speciaal systeem te ontwerpen. Daardoor worden de aanbieders vanzelf beter vergelijkbaar.’

Veel moeilijker is het om binnen de branche‑eigen activiteiten het dorre hout weg te kappen, vooral als een bedrijf een diepgeworteld beeld heeft van zijn eigen vaardigheden dat niet (meer) strookt met de werkelijkheid, zo stelt de bedrijfskundige Ravi Venkatesan, werkzaam bij de Amerikaanse motorenfabrikant Cummins Engines.

‘Cummins is in de loop der jaren steeds meer gaan uitbesteden. De toegenomen complexiteit, dat wil zeggen geavanceerde brandstofsystemen, zuigers, zuigerringen, kortom de kritische delen uit oogpunt van duurzaamheid en brandstofeconomie die een motor zijn concurrentievoordeel moeten geven, juist die worden door leveranciers gemaakt, terwijl de technologisch uitontwikkelde simpele gietdelen zoals het motorblok nog zelf worden gemaakt.’

Van Venkatesan komt het begrip ‘architectuurkennis’. Het deed Cummins nogal wat pijn om het maken van zuigers uit te besteden. Daar kreeg de motorenbouwer bijna een minderwaardigheidscomplex van. Maar zuigermakers hebben nu eenmaal veel grotere produktvolumes en daardoor lopen de leercurves sneller af. Kennis van de opbouw en de samenhang binnen een systeem (in dit geval een motor) maakt het mogelijk om achter klantenwensen te komen en die te vertalen in een uniek systeem ‑ ook al is dat opgebouwd uit componenten die ook door de concurrentie worden gebruikt. Daarnaast besloot Cummins zich te gaan concentreren op elektronica en keramische materialen.

Ook Ford nam zo’n psychologische barrière. Het liet Mazda de nieuwe Ford Escort ontwerpen op het platform van de Mazda 323. Voor het ego van Ford is dat misschien slecht, voor de marktpositionering van Ford is het veel beter om in het marktsegment van kleine auto’s gebruik te maken van een automaker die daar veel beter op is toegesneden.

 

 

 

 

 

(BIJSCHRIFT OPENINGSDIA)

Uitbesteden gebeurt op wereldschaal; Stork laat technisch tekenwerk verrichten in India, waar het ook pompen, ventielen en giet‑ en smeedwerk vandaan haalt.

(Foto: Stork, Naarden)

 

 

 

(QUOTE BIJ PORTRET)

‘Als je goed hebt omschreven wat de functie is die je voor een klant kunt vervullen, wordt ineens een stuk helderder wat de activiteiten zijn waarmee je geld kunt verdienen’, H.A.D. van den Boogaard, Stork

(Foto: Michel Wielick, Amsterdam)

 

(QUOTE BIJ PORTRET)

‘Doe je met de automatisering ook de kennis daarover de deur uit, dan loop je het risico dat je een kat in de zak koopt omdat diensten niet geüniformeerd en aanbieders niet vergelijkbaar zijn’, ir. J.G.M. Kerkhoff, Coopers & Lybrand

(Foto: Michel Wielick, Amsterdam)

 

 

 

(BIJSCHRIFT SCHEMA)

De dynamische structuur van de industrie volgens Stork. In de top van de piramide bevinden zich de makers van complete systemen. Daaronder de dienstverleners met bovenin de specialistische makers van subsystemen die op hun beurt weer werk uitbesteden aan de leveranciers van standaardcomponenten onderin. Helemaal aan de basis bevinden zich de uitzendbureaus die de economie haar flexibiliteit geven. Er is een voortdurende interactie van het (neerwaarts) uitbesteden van werk en het (opwaarts) inkopen van arbeid.

 

 

 

 

 

 

(KADER)

In de windtunnel van de concurrent

 

Hoewel de enorme schaalgrootte van Boeing het inbesteden van aërodynamische expertise logisch maakt, heeft het bedrijf geen moeite te erkennen dat een ander daarin beter is. Boeing laat zijn nieuwe model, de 737‑700, aërodynamisch in Groot-Brittannië doorrekenen op vliegeigenschappen, onder meer ten behoeve van de programmering van de vluchtnabootsers waarop de vliegers straks getraind worden.

Om metingen aan een schaalmodel in de windtunnel om te rekenen naar ware grootte, wordt in de aërodynamica het getal van Reynolds gebruikt. Boeing had zo berekend bij welke manoeuvres de luchtstroming over de vleugel op bepaalde plaatsen turbulent wordt en wanneer de stroming zich weer zou herstellen. Dat laatste bleek niet te kloppen; de turbulentie kon dan juist verergeren.

Dat werd ontdekt in de windtunnel van het Defense Research Agency (DRA) op het vliegveld Farnborough bij Londen. In die windtunnel kunnen luchtdruk en -temperatuur worden opgevoerd waardoor de schaaleffecten deels worden opgeheven. De directe metingen benaderen dan meer de werkelijkheid.

Maar ook de kennis en ervaring zijn groter dan die van Boeing. De vliegtuigindustrie van Groot-Brittannië specialiseerde zich dank zij deelname aan het Airbusconsortium als center of excellence op het gebied van vleugelontwerp en ‑bouw. Daarom staat de aërodynamica daar op zeer hoog peil. Boeing profiteert nu van kennis die in feite afkomstig is van zijn grootste concurrent.

 

(FOTO BIJ KADER)

Boeing laat het nieuwe vliegtuigmodel aërodynamisch doorrekenen op vliegeigenschappen in de windtunnel van het Defense Research Agency bij Londen.

Het Internet op: wie, wat, waar en hoe? (DI, 26 april 1995, nr. 7)

 

 

welcome-to-the-internet-90sOPBOUW VAN INTERNET UITGELEGD + SURFNET, NLNET, INGENIEURSNETWERK + BENODIGDHEDEN VOOR TOEGANG + KOSTEN VAN VERSCHILLENDE AANSLUITINGEN

 

Structuur van het Internet

 

Het Internet op: wie, wat, waar en hoe?

 

Er is een aantal mogelijkheden om toegang te krijgen tot Internet. De Ingenieur legt uit hoe de structuur van het Net in elkaar zit en zet de verschillende mogelijkheden op een rijtje. En niet onbelangrijk: wat kost het?

– Erwin van den Brink –

 

De auteur is redacteur van De Ingenieur.

 

 

Het Internet is in tegenstelling tot wat velen denken niet het enige alomvattende computernetwerk. Het onder­scheidt zich niet fysiek van andere netwerken. Het maakt ge­bruik van bestaande PTT-lijnen en in een enkel geval van speciale datalijnen. Zo zijn er meer wereldwijde netwerken­. Als we in een telecommunicatiekabel konden kijken om compu­terberich­tenverkeer te zien, zouden we daar berichten van aller­lei netwerken achter en naast elkaar door­heen kunnen zien flit­sen. Alleen aan de verpakking, het protocol, zouden we kunnen zien ‘door welk netwerk een bericht reist’.

Internet-verkeer reist in de TCP/IP-verpakking (Trans­fer Con­trol Proto­col/Internet Proto­col). Behalve het Internet zijn er andere, soortgelijke netwerken, maar die werken met andere protocollen: Bitnet in de VS en in Europa Terena (Trans European Research and Education Networking Association, voorheen EARN, European Advanced Research Network). Wereldwijd zijn er FidoNet en CompuServe en MemoCom. Tussen deze netwer­ken lopen echter dwarsverbindin­gen in de vorm van ‘vertaalcom­pu­ters’ die het overzetten van berichten naar TCP/IP-netwerken en vice versa mogelijk maken. Het superlatief dat hiervoor is bedacht is ‘de matrix’. Toe­gang tot het Internet is dus ook te verkrijgen via een commer­ciële netwerkdienst zoals CompuServe.

Er zijn ook netwerken die over de matrix heen liggen doordat ze meer of alle protocollen naast elkaar gebruiken, zoals Usenet, dat bekend staat als de inter­actieve Internetkrant met zijn duizenden nieuwsgroepen en discussielijsten waarin ieder­een berichten kan lezen en schri­jven. Usenet gebruikt TCP­/IP-, UUCP- en X25-verbin­dingen. UUCP staat voor Unix to Unix CoPy. Unix werd in de jaren zeventig ontwikkeld door de AT&T Bell-laboratories. Het was het eerste ‘open systeem’: het maakte informeel computergebruik via het tele­foonnet mogelijk.

Een X.25-verbinding is een PTT-lijn voor dataverkeer. Evenmin als het Internet is Usenet een organisa­tie – de andere netten zijn dat wel. Steve Daniel en Tom Trus­cutt ontwierpen het programma dat Usenet bestuurt en dat nadien zijn weg vond over de hele Wereld.

 

Leveranciers

Het Internet kent geen juridische eigendomstruc­tuur, maar wel een juridische beheerstructuur: een internationale vereni­ging, de Internet Socie­ty. Die stelt zich ten doel de techno­logie te beheren en verder te ontwik­kelen als wereldstandaard. De belangrijke samenstellende delen, de nationale en interna­tionale universitaire researchnetwerken, hebben wel een juridi­sche eigendom- en beheerstructuur, maar zij verwerken door­gaans niet alleen TCP/IP-verkeer.

Het universitaire researchnetwerk in Nederland is Surfnet (oorspronkelijk Samenwer­kende Universitaire Reken Faciliteiten), dat heel actief is als leve­ran­cier (provider) van aansluiting op het Internet. Surfnet heeft naast TCP/IP-verbindingen ook X.25-verbindingen. Er zijn vooral ken­nisin­stellingen en -bedrijven op aange­sloten (met name univer­si­teiten en onderzoekinstellingen, maar ook uitgeve­rij­en). Ook NLnet is een grote leverancier. Hierop zijn veel particuliere bedrijven (ongeveer 1200) aangeslo­ten. NLnet werkt met TCP/IP en UUCP. In tegenstel­ling tot Surfnet sluit NLnet ook particu­lieren aan. Surfnet BV is voor 49 % eigendom van de PTT en voor 51 % van de Stichting Surf. Voor de particuliere markt gaat de PTT via dochter Unisource het Internet aanbieden; aanvankelijk zal dat via Surfnet gaan.

Allerlei kleine non-profit Internetleveranciers zijn doorgaans wederverkoper van een faciliteit die door NLnet wordt beheerd. Surfnet en NLnet maken op hun beurt deel uit van Europese netwerken. Ook die gebruiken meer p­roto­col­len. Ebone, ont­staan in 1992, koppelt een aantal TCP/IP-net­werken, maar de betekenis is afgenomen met de komst van Euro­paNet (zowel TCP/IP als X.25). EuropaNet wordt geëxploi­teerd door Dante Ltd. (Delivery of Advanced Network Technology to Euro­pe). Dante is eigendom van een aantal Europese researchnet­werken, waaron­der Surfnet.

Evenzo maakt NLnet deel uit van EUnet (European Unix Network). NLnet en EUnet maken gebruik van zowel het IP-, als het UUCP-protocol. Er zijn in Nederland momenteel dus eigenlijk twee parallelle Internetten: Surfnet en NLnet. Deze twee zijn zowel onderling gekoppeld als verbonden met het datanet van de PTT, die zelf via Unisource de Internetmarkt opgaat evenals softwarebedrijven zoals Unisys en IBM. Dank zij het groeiend aantal aanbieders kan elke gebruiker straks tegen lokaal gesprekstarief het Net op.

 

Ingenieursnetwerk

De keuze van de niet-particulier tussen een Surfnet- of NLnet-aansluiting wordt naast de Inter­net­faci­liteiten en -kosten natuurlijk bepaald door de dien­sten die deze organisaties binnen hun eigen netwerk aanbieden. NLnet legt daarbij de nadruk op de prijsstelling van de verschillende verbindingsmodalitei­ten, de zogenoemde connecti­viteit (zie Kader ‘Verbindingen’). Het netwerkverkeer dat de klant genereert, wordt op basis van het volume afgere­kend. (Het verkeer binnen NLnet en de aangesloten wederverkopers is gratis.) Dat is logisch omdat NLnet zich richt op zakelijk berichten­verkeer. CompuServe richt zich ook op de zakelij­ke gebruiker: dit bedrijf biedt in zijn netwerk veel commerci­le, financieel-economische informatie in de vorm van eigen en aangesloten databanken (tegen betaling toegankelijk).

Surfnet richt zich veel meer op onderwijs en wetenschapsbeoefening. Aangesloten instellingen betalen naar rato van hun personele omvang en de grootte van de verbinding een vast bedrag per jaar.

Nu zijn ingenieurs wel geïnteresseerd in wetenschap­pelijke kennis, maar dan dient het doorgaans wel technische kennis te zijn. De ingenieur is vaak iemand die werkt in een kleine maar innovatieve onderneming: iemand met behoefte aan kennis, maar met weinig geld en tijd. Op die behoefte spelen het KIvI en NIRIA in met de ontwikkeling van het Ingenieursnetwerk. Het biedt een besloten discussielijst waarop leden van de ingenieursver­enigingen vragen aan en medede­lingen voor elkaar kunnen achterla­ten en waarop voor ingenieurs relevante informatie uit het Internet wordt gezet (evenals Surfnet dat voor wetenschappers in het algemeen doet).

 

Gopher en WWW

Wie op het Internet zelf wil werken, doet dit via het zoge­naamde cliënt-servermechanis­me. Met een cliëntprogramma op het eigen systeem (meestal de eigen pc) legt de gebruiker contact met serverprogramma’s die ergens op het Internet actief zijn, bijvoorbeeld in de computer van de leverancier, maar ook elders.

Er zijn list­servers die discus­sielijs­ten bevatten en bijhou­den waarin groepen mensen mededelingen voor elkaar achterla­ten. Er     zijn mailservers die E-mail sorteren en distri­bueren. Daarnaast zijn er servers die informa­tie over allerlei onder­werpen bevatten­.

Er zijn daarin ver­schillende typen, zoals telnet- of FTP-servers (File Transfer Proto­col). FTP is de manier waarop die server de informatie aan­biedt: in dit geval kun je die naar je toehalen (downloaden). In telnet-servers kun je informatie alleen bekijken. Omdat er over de hele Wereld duizen­den FTP-servers zijn, ontwikkelden medewerkers van de McGill-uni­versi­teit in Montre­al het programma Archie. Archieservers houden een lijst bij van alles wat FTP-servers ‘in de buurt’ te bieden hebben. Enkele van de tientallen archieservers in de Wereld houden als een ‘gouden gids voor de hele Wereld’ alle informatie bij van alle FTP-ser­vers. Om archieservers te kunnen benaderen heeft de Internet­gebruiker een archiecliënt-programma nodig op zijn computer.

De gebruiker moet echter elk stukje informatie eigenhandig, door het intoetsen van een commando, benaderen. Het zou veel handi­ger zijn als er een programma is dat dit voor je doet. Gopher is zo’n programma, ontstaan als campusinformatiesysteem op de universiteit van Minnesota. Gopher presenteert menu’s. Door een keuze te maken wordt automatisch verbinding gemaakt met de machine waar de gekozen informatie is te vinden. Het is een zogenaamde overkoepelende navigatiedienst. Er kunnen archie­servers mee benaderd worden of netwerknieuws worden gelezen. Alle Internetactiviteiten zijn uit te voeren via Gopher.

Dat geldt ook voor de nieuwste navigatiedienst World Wide Web, WWW of W3. Alleen worden verbindingen niet gelegd via menukeu­zen, maar via zogenaamde hypertextlinks, markeringen in tekst van inhoudsopgaven, maar ook in de uiteindelijke tekst/illustratiebestanden.

Homepages zoals het KIvI, NIRIA en De Ingenieur die op WWW hebben staan, zijn in feite een mooie grafische presentatie op het beeldscherm van de eigen diensten. Door de markeringen op het beeldscherm met de cursor (doorgaans bestuurd via een muis) ‘aan te klikken’ wordt verbinding gelegd met een ander bestand. In veel WWW-pagina’s leg je door markeringen aan te klikken wisselende verbindin­gen met machines op de meest uiteenlopende plaatsen in de Wereld. De gebruiker merkt niets van het scha­kelen met een computer in de VS en een seconde later met één in Japan. Hij ziet alleen de informatie te voorschijn komen. Met WWW is het Net in feite kindvriende­lijk geworden.

 

Literatuur

[1]Vanheste, J., Internet, gids voor wereldwijd net­werken; Uitgeverij Het Spectrum, Utrecht, 1994; ISBN 90.27434.38.7.

[2]SURFnet Gids 94/95; uitgave van SURFnet BV, postbus 19035, 3501 DA Utrecht; ISBN 90.74719.01.5.

[3]Bang, S., e.a., Het complete Internet handboek; Uitgeverij Academic Service, Amsterdam; ISBN 90.39501.88.2.

 

Zie ook het omslagartikel op blz. 6 t/m 10 in dit nummer van De Ingenieur.

 

 

 

 

 

(KADER)

Toegang tot Internet

 

Om toegang te krijgen tot het Internet zijn nodig:

  1. Hardware. Een computer met ten minste een 486-processor is aan te raden. Voor het meest eenvoudige berichten­verkeer, E-mail, is bij voorkeur een 2400 baud modem nodig. Koop het snelst denkba­re modem dat u zich kunt veroorloven. Zo is 14 400 baud al heel normaal, en binnenkort 28 800. Hetzelfde geldt voor een harde schijf: 1 gigabyte opslagruimte of meer is, zeker voor bedrijfsmatige toepassingen, aan te raden. Voor een particulier is 100 Mb voldoende.
  2. Software (elke goede provider helpt u daar aan). Een telecommunicatieprogramma; Zmodem wordt veel gebruikt. TCP/IP-software; een versie die een Slip- of PPP-verbinding (uw compu­ter wordt dan zelf onderdeel van het Internet) kan maken is voor de frequente gebruiker te verkiezen boven die voor een eenvoudi­ger log-inverbinding (u werkt na het intoetsen van een password vanaf de computer van uw provider). Ten slotte een Internetadres.

 

Voor allerhande adviezen kan men zich wenden tot: Tunix Open System Consultants, advisering en opleiding in Unix systeem- en netwerkbeheer, Internettrainingen en -confi­gura­ties, post­bus 31070, 6503 CB Nijmegen, tel. (080) 52 88 91, fax (080) 54 00 90, E-mail: info@tunix.kun.nl.

Leden van het KIvI en NIRIA kunnen het Internet op via een aanslui­ting op het Inge­nieursnetwerk. Op dit BBS kunnen zij een uitge­breide litera­tuur­lijst van Internetpubli­katies opha­len. Over de netwerkfa­cili­teiten van KIvI en NIRIA heeft ir. Maarten Woer­lee uitvoe­rig bericht in De Ingenieur van 8 febru­ari 1995 (nr. 2, blz. 39). Leden zonder aansluiting kunnen bij NIRIA een aanmeldingskaart aanvragen: NIRIA-bureau, postbus 84220, 2508 AE Den Haag, tel. (070) 352 21 41, fax (070) 352 12 21, E-mail: NIRIA@Technet.IAF.NL.

De grote Nederlandse leveranciers van aansluiting zijn: NLnet, Kruislaan 419, 1098 VA Amsterdam, tel. (020) 663 93 66, fax (020) 665 53 11, E-mail: info@nl.net; en Surfnet, postbus 19035, 3501 DA Utrecht, tel. (030) 31 02 90, fax (030) 34 09 03, E-mail: admin@surfnet.nl. Ook Unisys levert aansluiting: postbus 22560, 1100 DD Amsterdam, tel. (020) 565 75 85, fax (020) 697 77 55.

De twee grootste Amerikaanse leve­ranciers van commerciële (niet-publieke) wereldnetwerken met betalende abonnees die speci­fie­ke informatiediensten verzorgen en toegang geven tot het publieke Internet: America Online met 700 000 abonnnees (tel. +1 800 827 6364) en Compu­Serve met 1,5 miljoen abon­nees (tel. +1 800 848 8199).

We noemen twee bedrijven met grote online databanken die direct via het Internet toegankelijk zijn (tegen aanzienlijke betaling): Mead Data exploiteert de Dow Jones Retrieval System (tel. +1 800 227 4908, telnet://nex.meaddata.co) en Dialog Information Systems (tel. +1 800 334 2564, telnet://dia­log.com).

 

 

 

 

 

(KADER)

Verbindingen

 

Voorbeeld 1

Een particulier koopt een log-inabonnement bij NLnet. Informa­tie uit het Net moet eerst worden gekopieerd naar de computer van NLnet en vandaar via een communicatieprogramma zoals Zmodem of Kermit worden gedownloaded. Omslachtig. Voor dezelfde prijs biedt NLnet nu ook personal IP aan, waarmee de volledige Internetfunctionaliteit op de eigen pc ter beschikking staat.

De abonnee moet in de meeste gevallen interlokaal bellen naar het dichtstbijzijnde inbelpunt van de Internetleveran­cier. Dat kost tussen 18.00 uur en 8.00 uur 15 cent per 94 seconden = f 5,74 per uur. Het NLnet-abon­nement kost f 15,- per maand. De NLnet-verbinding kost f 3,- per uur. Hij heeft 10 uur per maand verbinding in de avonduren. Kosten (bron: Tunix):

f 15,- abonnement;

f 30,- verbindingstijd;

f 57,40 telefoonkosten;

f 102,40 totaal per maand.

 

Voorbeeld 2

Een lid van NIRIA of KIvI sluit zich aan bij het Ingenieursnetwerk. Hij krijgt een log-inverbinding identiek aan die in voorbeeld 1. De log-inverbinding biedt de mogelijkheid van E-mail binnen en buiten het BBS en toegang tot het Internet. Uit­gaande van 10 uur verbindings­tijd, tegen interlokaal tarief, per maand zijn de kosten:

f 10,- E-mailabonnement;

f 25,- Internetabonnement;

geen kosten verbindingstijd (maximaal 2 uur verbin­ding per dag);

f 57,40 telefoonkosten;

f 92,40 totaal per maand.

KIvI en NIRIA leveren geen hardware, wel software en onder­steuning en die zijn eveneens gratis. De kans bestaat dat het E-mail- en Internetabonnement in de toekomst gratis worden.

 

Voorbeeld 3

De Unisys-kit: bestaat uit een pc (optioneel), software, modem en E-mailadres, een jaar­abon­nement, ondersteuning, installatie ter plekke en trai­ning; prijs met pc is f 3000,-, zonder f 845,-. Kosten (bron: Unisys):

eerste jaar geen kosten loginabonnement (daarna f 100,- per jaar);

f 40,- gebruikskosten (f 4,- x 10 uur);

f 57,40 telefoonkosten;

f 97,40 totaal per maand.

 

Voorbeeld 4

Bedrijf met een E-mailaansluiting bij NLnet. Uitgaande post bedraagt 5 MB per maand, inko­mende post ook 5 MB; 10 MB verkeer over 9600 bps modem kost 4 uur. Kosten (bron: NLnet):

E-mailabonnement gratis sinds 1-1-95;

f 12,- aansluitingstijd NLnet;

f 47,12 gesprekskosten;

f 59,12 totaal per maand.

 

Voorbeeld 5

Een dial-up Slip- of PPP-verbinding (Slip = serial line protocol, PPP = point to point protocol). De eigen computer maakt zelf deel uit van het Internet, waardoor alle Netdiensten rechtstreeks gebruikt kunnen worden en ook stemverbinding kan worden gelegd met speciale apparatuur en programmatuur. Een aantal mensen in het bedrijf maakt 2 uur per dag, 20 dagen per maand gebruik van de verbinding. Interlokale telefoonkos­ten bij transmissie van tussen de 300 MB en 600 MB aan gege­vens, buiten het NLnet. Kosten (bron:Tunix):

f 825 verkeersvolume gerelateerd NLnet abonnementstarief;

f 120 voor 40 uur aansluitingstijd à f 3,- per uur;

f 460 voor 40 uur interlokale telefoonkosten van f 11,48 per uur overdag;

f 1405 totaal per maand.

 

Voorbeeld 6

Een bedrijf in Nijmegen wil dat meer personen tegelijker­tijd via het bedrijfsnetwerk het Net op kunnen. Huurlijn naar NLnet backbone in Nijmegen. Deze continu open verbinding maakt het ook mogelijk als bedrijf zelf een server met informatie op te zetten die anderen vanuit het Net kunnen benaderen. Netwerkverkeer bedraagt maximaal 1 Gb datatransmissie per maand buiten NLnet. Kosten (bron: NLnet/Tunix):

f 4000 entreegeld NLnet;

f 4900 PTT-entreegeld voor 64 kB-lijn;

f 8900 totaal eenmalig;

Variabele kosten:

f 1000   abonnement NLnet InterEUnet klasse 2;

f 643,50 lijnkosten NLnet;

f 649   PTT, lijnkosten

f 2292,50 totaal per maand.

Digitale nostalgie! Coververhaal over Internet. (De Ingenieur, 1995, nr. 7)

Amiga500_systemOMSLAGARTIKEL

 

WERELDWIJD TUSSEN DE 20 MILJOEN EN 45 MILJOEN GEBRUIKERS + TELEFONIE VIA INTERNET MOGELIJK + NIEUWSGROEPEN EN DISCUSSIELIJSTEN + ERVARINGEN VAN INGENIEURS MET INTERNET

 

Selectie van informatie is eerste vereiste

 

Het nut van Internet

 

Met behulp van de pc contact leggen met iedereen in de gehele Wereld. Internet maakt het mogelijk. Toch zijn de meningen over het wereldwijde netwerk verdeeld. ‘Je krijgt alleen antwoorden op nooit gestelde vragen’, oordeelt de één. ‘Een onschatbare bron van expertise’, meent de ander.

– Erwin van den Brink –

 

De auteur is redacteur van De Ingenieur.

 

 

Is het Internet het land van melk en honing in cyber­space? Nee. Het begint in rap tempo steeds meer te lijken op de gewone informatiemaat­schappij: voor niets gaat de zon op. Naast het gratis of tegen betaling beschikbaar stel­len van vastgelegde kennis, waaronder veel netwerksoftware, gaat het vooral om communicatie. Daardoor ontstaat ook kennis, al is die niet vastgelegd.

Over zulke kennis had prof.dr. P.H.M. Vervest, hoogleraar telecommuni­catiemanagement aan de Erasmus­ Universi­teit, het onlangs tijdens een sympo­sium voor managers, georga­ni­seerd door Sie­mens, toen hij zei dat ‘het copy­right wordt afge­schaft’. Vervest: ‘Ik stel een vraag op het Internet en iemand reageert daarop. De essentie is: we kunnen nu niet meer praten over wie eigenaar is van kennis.’

Communice­ren via het Internet is veel goedkoper dan internationaal telefoneren. Vol­gens Tunix Open System Consultants, een Nij­meegs adviesbu­reau op het gebied van systeem- en net­werkbe­heer, variëren de kosten van honderd gulden per maand voor de kleine particulier tot ettelijke duizenden gul­den per maand voor bedrijven.

Het KIvI en NIRIA bieden hun leden via hun bulletinboardsysteem (BBS) Ingenieur­snetwerk E-mailfa­ciliteit en toegang tot het Internet. Volgens systeem­beheerder An­dries Rits­ema halen het KIvI en NIRIA in toenemen­de mate voor ingenieurs relevante (gratis) software vanuit het Internet naar het eigen BBS toe, zodat de noodzaak voor aange­sloten ingenieurs om zelf langdu­rig infor­matie op het Internet te zoeken wordt beperkt.

Daarnaast gaan kleine leveranciers zonder specifieke doelgroep bijvoorbeeld in zee met een groot compu­terbedrijf om het Net naar het grote publiek te brengen. Zo werkt Stich­ting Inter­net Access ofwel Internet Access Foundation (IAF) nu samen met Unisys, welk computerbedrij­f de aansluitingen verkoopt in de vorm van een pakket bestaande uit hardware plus software.

 

Protocol

‘Alhoewel krakers wel degelijk actief zijn, vinden wij hier ook ouders die contact houden met hun in het buitenland stude­rende kinderen en kleine tech­nolo­gisch geori­ënteerde bedrij­ven die zonder de kennis die zij via het Internet vergaren het hoofd niet boven water zouden kunnen houden’, nuanceert voor­zitter H.W. Klöpping van IAF het vrijgevochten imago van het Net.

Het is zo vrijgevochten omdat het niet als netwerk is ontwor­pen. Zijn samen­stel­lende delen, de tienduizen­den LAN’s (local area networks) hebben één ding gemeen: een TC­P/IP-protocol als communicatie­stan­daard. Het Trans­fer Con­trol Proto­col/In­ternet Proto­col sloeg wereld­wijd aan als dè stan­daard om compu­ters met elkaar te laten praten.

Behalve dit is de essen­tie van het Inter­net dat communicatie niet via directe, ‘exclusieve’ verbindingen loopt zoals in het telefoonverkeer, maar ‘mee­rijdt’ in grote verkeersstromen. Wie tot voor kort een com­merciële databank zoals Dialog in de VS via het X.25-protocol van Unidata/Datanet 1 van de PTT wilde raadple­gen, moest trans­atlantisch telefone­ren. In de wereld van het Inter­net is dat een ongelofelijk ondoel­matig ge­bruik van bandbreed­te. IP en X.25 zijn twee uitersten. IP is een uiterst summier protocol. Deze ‘software-enveloppe’ heeft net voldoende infor­matie om te kunnen zeggen waar een datapak­ket vandaan komt, waar het naar toe gaat, wat voor pakket het is en hoe groot het is. TCP is in feite een uitbreiding van het protocol met opties voor foutdetectie en -correctie. X.25 daarentegen omvat standaard een zeer gecompliceerd mechanisme voor foutenverwer­king en handshaking (afspraken over aanslui­tingen of pakketbe­stel­ling). Die hoeveelheid ‘verpakkingsmate­riaal’ of overhead slokt de bandbreedte van het communicatie­kanaal op.

 

Bandbreedte

Zo­als de exclusieve taxi naar het station rela­tief duur is en de trein vanwege zijn collec­tief gebruik goedkoop, zo is bij het ‘Internetten’ het bel­len naar het dichtstbijzijnde inbel­punt van de provider, de leverancier die toe­gang geeft tot het ­Net, relatief duur, namelijk het (inter-)lokale PTT-gespreksta­rief. Maar vanaf dat punt deelt men de kosten van de ‘infor­matiesnel­weg’ met miljoenen anderen. ‘Bovendien halen wij regel­matig upda­tes van public domain software naar ons toe en zetten die op onze eigen server in Utrecht waar onze abonnees die software kunnen ophalen. Dit zogenaamde ‘spiegelen‘ ontlast het Internet’, zegt ir. Ben Geer­lings van Surfnet, een van de twee grote providers in ons land. Dit netwerk wordt met name ge­bruikt door univer­siteiten.

Het TCP/IP-netwerk van Surfnet werkt nu met lijnen van 64 kbit/s tot 34 Mbit/s. In 1996 komen er 155 Mbit/s-lijnen en later 1 Gbit/s-lijnen. Dat betekent dat er straks behalve statische gegevens ook veel gemakkelijker grote bestanden met bewegend beeld en geluid overheen gestuurd kunnen worden. Volgens prof. Vervest kan Surfnet 500 000 Nederlanders (iedereen in het hoger onderwijs) telefonie aanbieden tegen een fractie van het PTT-tarief.

Het Amerikaanse bedrijf Internet Phone doet dat al. Voor 49 dollar koop je er de software die stemgeluid comprimeert in datapakketjes van de normale ‘Internetafmeting’. Voor het leggen van een stemverbinding moeten twee Netgebruikers op een vooraf overeengekomen tijdstip via hun computer verbinding maken met een zogenoemde ‘babbelbox’ ergens in het Net. Tot nu toe werd via deze directe verbinding beeldschermtekst over en weer gestuurd, maar dat kan ook met stemgeluid. Iemand opbellen kan dus niet, maar als er eenmaal verbinding is, bedragen de kosten voor beide gebruikers – ongeacht hun onderlinge afstand – niet meer dan het plaatselijke telefoontarief! Volgens Vervest zal bandbreedte op den duur gratis wor­den: ‘De prijs om 1 Mbit infor­matie over een kilome­ter te vervoeren daalt jaarlijks met tientallen procenten.’

De geruisloze aanvaarding van het (kenne­lijk) beste communicatieprotocol TCP/IP is kenmerkend voor het zelforganiserende vermo­gen, evenals de ordelijke adres­toe­wij­zing aan deelnemers en het beheer. Het Internet bewijst dat anarchie niet hoeft te leiden tot chaos.

 

Marketing

Er zijn alleen al op Surfnet nu ongeveer 100 000 Internetgebruikers, wereldwijd tussen de 20 miljoen en 45 miljoen. Tussen oktober 1993 en oktober 1994 verdubbelde het aantal aangesloten computers bijna, van 2 056 000 naar 3 864 000. Drie maanden later, in januari 1995, waren er al weer een miljoen aansluitingen bij en bleef de teller steken op 4 852 000 machines.

De versnellende aanwas komt doordat (pc-)applicaties steeds gebruiksvriendelijker worden. Geerlings: ‘Eerst moest je de netwerkadressen kennen om ergens te komen en moest je om op een plek te komen steeds zelf apart verbinding maken. Tegen­woordig zijn er menuge­stuurde navigatie­diensten zoals Gopher en World Wide Web (WWW) die her en der in het Net op zogenaamde servers staan.’ Een server is op zichzelf ook een programma dat diensten aanbiedt, zoals het programma Gopher. Zulke diensten kun je gebruiken door de dichtstbijzijnde server te bena­deren met een daarbij horend cliëntprogramma op je eigen pc.

Keerzijde van die openheid is dat beveiliging van berichten­ver­keer tot nu toe een lage prioriteit heeft gehad. Maar de ontwik­ke­ling van zogenaamde firewalls (computerprogramma’s die netwer­ken beveiligen tegen indringers) is voortvarend ter hand genomen nu ook bedrijven zich op het Internet gaan begeven.

Er zijn steeds meer bedrijven en instellingen die zich met een eigen server op het Net etaleren of anders via de server van een provider. Een bedrijf kan ook op zoek gaan naar klanten of partners door een boodschap te zetten in zoge­naamde ‘discussielijsten’ of ‘nieuwsgroepen’. Iedereen die zich daarop ‘abonneert’ ontvangt alle be­richten die anderen naar die lijst versturen. Omgekeerd komt elk be­richt dat je naar deze lijst stuurt, automatisch terecht bij alle andere abonnees. Dit systeem wordt onder meer bestuurd door het wereldwijd gebruikte programma ListServ. Abonneren doe je met een ListServ-commando op je eigen compu­ter.

Dit machtige direct-marketinginstrument kan zich echter ook tegen het bedrijf keren. Want het Internet bevei­ligt zichzelf vooralsnog met het beginsel ‘commercieel mis­bruik wordt ge­straft’. Het Amerikaanse advocatenkantoor Canter & Siegel dat ongevraagd een adverten­tie plaatste in duizenden nieuwsgroepen van Usenet, de interac­tieve ‘krant’ van het Internet, kreeg van over de hele Wereld karre­vrachten met woedende reacties, waardoor de computer van Inter­net Direct, de provider die Canter & Siegel gebruikten, her­haaldelijk crashte. Een prima marketinginstru­ment dus, al is het maar om de mate van ergernis over je reclameboodschap te meten.

 

Discussielijst

Er zijn nu al duizenden nieuwsgroepen en discus­sielijsten, maar dat kunnen er tien- of honderdduizenden worden. Surfnet bijvoorbeeld maakt voor aangeslotenen desge­wenst discussie­lijsten aan. Als we Surfnet zouden vragen een discussielijst flooding-l@lnic.surfnet.nl aan te maken, kan iedereen die iets weet of wil weten over overstro­ming daar vragen en opmer­kingen neerzetten. De annotatie ‘flooding-l@nic.surfnet.nl’ is gelijk aan die van E-mailadressen; ListServ is gebaseerd op E-mail. Het voordeel boven E-mail is dat snel en gemakkelijk informatie is te vinden over bestaande lijsten. ListServ kent bijvoor­beeld het comman­do list global, waarmee de gebruiker een overzicht van alle 4000 ListServ-lijsten krijgt toegestuurd, en new list voor een overzicht van nieuwe lijsten. ListServ tast daarvoor alle list­servers in de hele Wereld af.

­Geer­lings: ‘Wij controleren of er geen lijst is die al zo heet. Of het een open of geslo­ten lijst moet worden.’ De direc­teuren van de universitaire reken­centra bijvoorbeeld hebben samen een geslo­ten lijst. Duidelij­ke naamgeving is essentieel. Een bioloog die wil discussiëren over het fruit­vliegje zal de lijst de Latijnse naam van het fruitvliegje geven.

In het geval van Surfnet komt een discussielijst te staan in de computer van de Katho­lieke Universiteit te Nijme­gen. Omdat duizenden mensen zich wereld­wijd op een lijst kunnen abonne­ren, kunnen dergelijke discus­sies verzanden in een enorme tekstbrij die de abonnee dan in zijn postbus vindt; de ervaren gebruiker leert echter snel de zin van de onzin te scheiden.

Een nieuwsgroep is eigenlijk hetzelfde. Alleen worden de bijdragen dan niet naar de eigen postbus doorgestuurd, maar gebruikt onze pc programmatuur om de berichten op een cen­traal systeem te lezen. Het is in feite een combinatie van bulletin­board en discussielijst.

 

Selecteren

Volgens drs. Jeroen Vanheste, werkzaam bij Tunix Open System Consultants, is 80 % van de E-mailberichten binnen drie seconden waar ook ter Wereld gearriveerd en 95 % van de berichten binnen tien secon­den. Dat is mede te danken aan het feit dat een van de krach­tigste net­werkverbindingen tussen Europa en de VS ver­trekt vanuit Am­sterdam: de grote Dante-lijn, die het (weten­schappe­lijk georiënteerde) EuropaNet ver­bindt met het NSFnet van de Natio­nal Scien­ce Foundation in de VS.

De snelheid, de lage prijs en het grote bereik trekken ook veel studenten aan. Studenten aan de Erasmus­ Universiteit Rotterdam leren nu via het Internet businessplan­nen te schrijven samen met studenten uit de VS en Japan.

Bij de TU Eindhoven is prof.dr.ir. Egbert-Jan Sol van de faculteit Technische Bedrijfkun­de bezig het Net te promoten. Onder studenten is grote belangstel­ling voor telestuderen. De bibliothecaris van de TU, drs. C.T.J. Klijs, benadrukt in het universiteits­blad Cursor het belang van ontsluiting van de Internet-infor­matie op een bibliografisch verantwoorde wijze. ‘De eis dat litera­tuur gepubliceerd moet zijn, is cruciaal: daarmee geeft de auteur aan dat het om een eindprodukt gaat.’ De bibliotheek van de TU Eindhoven heeft Internettoegang via twintig pc’s, maar Klijs waar­schuwt voor de inefficiëntie van het Internet, gezien vanuit bibliografisch standpunt.

Publicist Francisco van Jole schreef in de Volkskrant dat de zoeksystemen één ding gemeen hebben: ‘Driekwart van de resul­taten is waarde­loos. Niet alleen omdat er geen verbinding mee ge­maakt kan worden, maar eveneens omdat het systeem een broer­tje dood heeft aan informatiewaarde. Ze zoeken niet overal en bestrijken allemaal grotendeels hetzelfde gebied. In de VS zijn mensen die zich aanbieden als informatievergaarders. Ze verdienen honderden dollar per uur. De waarde van het dage­lijks gebruik van het Internet schuilt vooral in het verkrijgen van antwoorden op nooit gestelde vragen. Het is enigszins te vergelijken met het plezier van het door een encyclopedie bladeren en opdoen van willekeurige kennis.’

Ir. Ben Geerlings: ‘Ik vind dat overdreven pessimistisch. Je moet er iemand voor vrijstellen, een bibliothecaris, documen­ta­list.’ Dat beaamt drs. Jeroen Vanheste: ‘Je hebt een cybra­ri­an nodig, een librarian die werkt in cyberspace. De rubrice­ring is redelijk chaotisch. Er is geen universeel systeem om onderwerpen, vakgebieden te classificeren.’ Geerlings: ‘Je kunt ook achter informatie komen door een vraag achter te laten in discussielijsten.’

‘De crux is om goede selec­tiemecha­nismen voor aangeboden informatie te ontwikkelen’, zei prof.dr.ir. Cob­ben, werkzaam bij Coopers Lybrand, tijdens het Siemenssymposium. ‘In mijn elektronische postvakje staat vaak zo veel onzin dat ik per ongeluk ook dat ene berichtje verwijder dat ik wèl had willen lezen; jammer dan. De hoeveelheid E-mail was in mijn kringen aanvanke­lijk niet te filmen. Nu neemt het af. De behoefte aan band­breedte neemt dus ook af. Er is een mismatch tussen vraag en aanbod. Al het gepraat over informatietechno­logie is een hoop geschreeuw en weinig wol. Een hoop window­dressing.’

Toch bevinden zich 16 miljoen Amerikanen gemiddeld 18 uur per maand op het Internet. En dus vindt G.N. Hughes, president van AT&T Trans­mission Sys­tems (hij sprak op 30 november 1994 tij­dens de Technolo­giele­zing in de Nieuwe Kerk te Den Haag) dat het Internet de wegbereider is voor de information highway die de regering Clinton heeft aangekondigd. Hughes noemt de gebrui­kers ‘internauten’.

De Universiteit Twente zendt rond deze tijd twee lezin­gen over de elek­tronische snelweg ‘inte­graal’ – dat wil zeggen in bewegend beeld en geluid – uit op het Internet. Nu nog kunnen slechts enkele pc-bezitters met een zeer breedbandige verbin­ding zulke infor­matie ontvan­gen. Ze zijn net zo bevoorrecht als de astronauten die de ruimte bereikten. Maar ook deze multimediale cy­berspa­ce zal bij het huidige tempo van ontwik­keling binnen de kortste keren door miljoenen worden bevolkt.

 

Zie ook het artikel ‘Het Internet op: wie, wat, waar en hoe’ op blz. 32 t/m 35 in dit nummer van ‘De Ingenieur’.

 

 

 

 

 

 

(KADER)

Ervaringen van ingenieurs

 

‘Discussie op het Internet is wat ongeorganiseerd en leent zich niet voor de formele ingenieurs­praktijk, maar voor crea­tieve ontwerpers is het een onschatbare bron van expertise uit de hele Wereld’, laat Tim Craig, hoofd van de ontwerpafde­ling van The Electronic Design Laboratory in Groot Brittannië, weten in reactie op een oproep van De Ingenieur in een reeks dis­cussie­lijsten van het Internet waarin technici berichten uit­wisse­len.

Craig: ‘Als zelfstandig elektrotechnisch ontwerpbureau beste­den we veel tijd aan onderzoek. Vroeger moesten we daarvoor tijd­schriften en handboeken doornemen en soms ook naar experts toegaan. Een voorbeeld is dat het Internet ons heeft gehol­pen een aandrijfcircuit te ontwikkelen voor een industriële elektro­motor. Ik schat dat de leercur­ve in dit geval is terugge­bracht tot een kwart. We konden ons produkt eerder op de markt zet­ten.’

Mark Folsom, die via America Online reageert (het netwerk van de Amerikaan­se regering), meent echter dat ‘veel mensen willen specule­ren over dingen waar ze weinig vanaf weten zonder je te laten weten dat ze maar wat gissen. Slechts weinig mensen met solide informatie zijn bereid die met je te delen.’ Hij is de enige die uitgesproken negatief is over het Net.

Janine Kardokus, werkzaam bij Computech in Spokane (Washing­ton) kreeg van ‘fellow techies’ een betere respons op vragen aangaande octrooien dan vanuit juridische discussie­lijsten.

David L. Elliott van het Institute for Systems Research van de Universiteit van Maryland haalde van de FTP-server (een gedeelte geheugen op een van de computers in het Net, dat diensten en informatie distribueert) van de Franse organisatie INRIA (Institut Natio­nal de Recherche en Informatique et en Automa­tique) software om gegevens te bewer­ken over akoestische reacties van een metalen balk. Het be­schikbaar komen van de (gratis) software was eerder aange­kondigd op de lijst sci.eng­r.c­ontrol. Een lijst is enigszins te vergelij­ken met een BBS waarin mensen mededelingen voor elkaar kunnen achterlaten.

 

 

 

 

 

(BIJSCHRIFTEN)

 

(BIJ OPENINGSDIA VAN DAME)

(Foto: Michel Wielick, Amsterdam)

 

 

(BIJ PORTRETDIA)

Ir. Ben Geerlings van Surfnet: ‘Eerst moest je de netwerkadressen kennen om ergens te komen en moest je steeds zelf apart verbinding maken, tegen­woordig zijn er menuge­stuurde navigatie­diensten zoals Gopher en World Wide Web.’

(Foto: Michel Wielick, Amsterdam)

 

 

 

(BIJ PORTRETDIA)

Drs. Jeroen Vanheste, Tunix Open System Consultants: om uit de voeten te kunnen met de informatie die Internet biedt, heb je een ‘cybrarian’ nodig, een librarian die werkt in cyberspace.

(Foto: Michel Wielick, Amsterdam)

 

 

 

(BIJ DIGITAAL BEELD)

Ir. Ben Geerlings van Surfnet, van huis uit landbouwingenieur, haalde van een Amerikaanse Internetserver een ‘kikker-snijpracticum’. Door het programma naar zich toe te halen kan een student via muisbesturing een kikker leren ontleden. Het interactieve programma bestaat uit bewegend beeld met geluid.

Lean Production Jose Ignatio Lopez (De Ingenieur, nr. 2, 1995)

 

Om lean production mogelijk te maken moet bij het ontwerpen al rekening worden gehouden met het assemblageproces. (Foto: NedCar, Born)
Om lean production mogelijk te maken moet bij het ontwerpen al rekening worden gehouden met het assemblageproces. (Foto: NedCar, Born)

Hoog gerezen, diep gevallen: lees hier even hoe het afliep met deze automobieltovenaar.

De wurger van Ruesselsheim, Jose Ignacia Lopez: 'We stellen niet langer de productie centraal maar de klant.' (Foto Paul Voorham, Voorburg.)
De wurger van Ruesselsheim, Jose Ignacio Lopez: ‘We stellen niet langer de productie centraal maar de klant.’ (Foto Paul Voorham, Voorburg.)

OMSLAGARTIKEL

 

(Streamer)

LEAN PRODUCTION IN AUTO-INDUSTRIE + JOSÉ IGNATIO LOPEZ VAN VOLKSWAGEN IN NEDERLAND + UNIEK PROJECT VAN NEDCAR +

 

(Bovenkop)

Toeleveranciers in auto-industrie onder grote druk

 

(Kop)

Lean production volgens wurger Lopez

 

(Intro)

Toeleveranciers in de auto-industrie moeten goedkoper werken. Dat is de boodschap van Volkswagen-topman José Ignatio Lopez. Door lean production moeten voorraden verdwijnen; het assembleren moet sneller. NedCar introduceert zelfs de primeur van twee automerken op één produktielijn.

– Erwin van den Brink –

 

(Credit auteur)

De auteur is redacteur van De Ingenieur.

 

 

‘Ik ben het volkomen oneens met meneer Lopez’, zegt direc­teur Fred Welschen van Inalfa, een toeleveringsbe­drijf voor de automobielindustrie tegen José Ignatio Lopez, chef produktie en inkoop van Volkswagen AG. Hij verwijt Lopez tijdens een congres, georganiseerd door het tijdschrift Automobielmanagement op 12 december in Amster­dam, de revival van de flower power-tijd te prediken: als managers liever zijn voor arbeiders, worden die vanzelf produktiever; de voorwaarde om de gunst van de klant winnen.

Deze empower­ment van het uitvoerende personeel is een aspect van lean production, het produceren met een minimum aan mensen, midde­len, tijd en idealiter zonder wachttijden en voorra­den. Zonder voorra­den, want onder­delen worden just in time aangele­verd. Zonder wachttijden tussen werkstati­ons, want er zijn geen bottle­necks of road blocks. En zonder foutief eindpro­dukt, want de arbei­ders zelf zijn ‘eigenaar’ van het produk­tiepro­ces.

Japanse automakers kunnen volstaan met de helft van het aantal montage-uren dat de Europese nodig hebben, zij halveren de Europese ontwikkelingstijd en produktcyclus alsmede de distributiekosten. Wordt een toeleve­rancier op die manier slank, dan kunnen zijn prijzen met tientallen procenten omlaag.

Alleen doet Lopez het, tot grote woede van Welschen, andersom: hij verlaagt eerst de prijzen en zegt zijn toele­veranciers dan dat zij maar lean moeten wor­den, ‘niet omdat ik het wil, maar omdat de klant die prijs en kwaliteit eist’. De klant is degene die anders straks een Japanse of Koreaanse auto koopt in plaats van een Volkswagen. Is het slim werken of slaven drijven en afknijpen? Lopez weet een andere toeleve­ran­cier, Karel Bos van Bosal, wel aan zijn zijde. Bos: ‘Lopez geeft je een schop. Ga door met schoppen. Het houdt me wakker en alert.’

 

Dure voorraden

Het afknijpen van de prijzen door ‘de wurger van Rüselsheim’, zoals Lopez in de pers is genoemd (vóór zijn omstreden overstap van GM’s Opel naar VW), leidt volgens Wel­schen op den duur tot een oligopo­lie, een kartel van grote toeleveringsbedrijven omdat de kleintjes de investe­ringen niet meer kunnen opbrengen bij zulke lage pri­jzen.

Niet investeringsvermogen maar aanpassingsvermogen bepalen de concurrentiekracht van toeleveranciers, werpt Lopez tegen. ‘Wij creëren de weg door haar te begaan’, parafraseert hij een Spaanse dichter. Of willen wij dat Wolfs­burg straks net zo verla­ten is als de ooit levendige scheepswer­ven van Bilbao, waar Lopez is opge­gro­eid?

‘Allemaal mooi en aardig’, hoont Welschen, ‘Maar als ik een nieuwe assemblagelijn wil opzetten, heb ik uiteindelijk toch gewoon geld nodig.’

Inves­teren in een klassieke assemblagelijn is juist het toonbeeld van inefficiëntie, omdat er behalve daadwerkelijk onder­handen werk voortdurend ook een hoop voorraad door de fabriek onder­weg is of ligt te wachten. En dat is vermijdbaar. Je lost het echter niet op met investeren, maar slechts met aanpassen. Tussen twee werk­stations hoort maar één exemplaar te bewerken produkt onderweg te zijn. Overige exemplaren zijn nutteloos bewegende voorraad als er maar één exemplaar tegelijker­tijd kan worden be­werkt. Voorraad kost geld en voegt geen waarde toe aan het eindprodukt. In de oude situatie was het een noodzake­lijk kwaad, om voortgang van de produktie te waarbor­gen. Lopez: ‘We stellen niet langer de produktie centraal, maar de klant.’

De klant, aldus Lopez, wil niet langer opdraaien voor de kosten van voorraad, produktophoping en leegloop: de zogenoemde afstemverliezen in het proces. Voor Karel Bos is Lopez zo’n klant. Wij, automobilisten, zijn op onze beurt klant van ‘ons merk’ maar ook van importeur en dealer. Met ons steeds kriti­scher prijsbewustzijn zetten wij de klassie­ke voor­raad­functie van impor­teur en dealer onder spanning. Een kwart van de winkel­prijs van een auto wordt veroorzaakt door transport, dealer­marge, ver­koop en marketing. Ontwik­kelings- en assem­blage­kosten verte­genwoordi­gen slechts een kwart van de waarde van het eindpro­dukt. De helft van de kosten zit in het inkopen van onderde­len. Vandaar dat Lopez er zo op hamert dat zowel zijn toeleveran­ciers als distributeurs lean wor­den.

Taakgroepen

Volvo (zie Kader) produceert daarom alleen nog ‘voorraadvermijdend’ op klantenor­ders. Maar de produktie zelf is alleen goed lean te krijgen bij een maximale maar ook constante line speed, snelheid van het produktieproces. Een zo constant mogelijke snel­heid wordt bereikt doordat elk model wordt opgebouwd uit modulen die uit oogpunt van assemblage zoveel mogelijk identiek zijn. In de samenbouw is er dus geen verschil in montagetijd tussen een dieselmotor of een benzinemotor. Elke willekeurige modelmix loopt in constante snelheid door de assemblagelijn. Straks, als in Born Mitsubishi’s en Volvo’s op één lijn worden ge­bouwd, geldt dat ook voor de merkmix: de ene dag wat meer Volvo’s, de andere dag wat meer Mitsubishi’s, maar elke dag een zo con­stant mogelijke output. Om de toch onvermijdelijke vraagfluc­tuaties te kunnen opvangen, kan de NedCarlijn in Born straks bij een constante lijn­snelheid van 45 wagens per uur meer of minder uren per week of zelfs per dag gaan draaien.

Voor de toeleveranciers geldt dat zij de schommelingen in totale afzet, maar ook die van specifieke modellen op de voet volgen. De leverancier van de stoelen van NedCar krijgt vier uur van tevoren te horen welke stoelen en banken hij moet leveren. Hij levert elk half uur aan. Lean production heeft zo een olievlekwerking door de hele produktieketen.

Japanners bereiken lean production door het inzetten van produktieteams met een teamleider. Op zichzelf beschouwd is dit managementconcept overigens niet Japans: het komt van de Amerikaanse profesor H.E. Deming, die stelt dat statis­tische controle door produk­tiemedewerkers leidt tot grote kwaliteitsverbetering en aparte toezichthouders overbo­dig maakt. Het team als process owner is in de Nederlandse bedrijfskundige literatuur al decennia bekend als de ’taakgroep’ die eveneens beoogt de procesbesturing en -controle zo veel mogelijk naar het uitvoe­rende personeel te delegeren. Deming’s bood­schap be­klijfde in Japan, niet in de VS.

 

Taakverbreding

Hiermee is een teer punt aangesneden. Waarom verplaatsen Japan­ners hun concept naar een vijandige omgeving? Volgens dr. Ben Dank­baar, van het onderzoekinstituut Merit (Maas­tricht Econo­mic Re­search Insti­tute on Innovati­on and Technolo­gy) van de Rijks­universi­teit Limburg, dwong aanvanke­lijk Westerse protectie de Japan­ners tot het openen van lokale produktiecentra. Op dit ogen­blik is vooral de dure yen voor Japanners aan­lei­ding om de local content (voor de Bornse Mitsubishi’s: het gehalte aan in Europa gemaakte onderdelen) te vergro­ten.

Dankbaar wijst ook op de extreem korte (maximaal 60 secon­den voor een handeling) en kritische (bijna tot op de seconde nauwkeurige) cyclustijden van lean production. Door de confucianisti­sche tradi­tie van toewij­ding aan het collectief is zo’n rigide produktiedisci­pline in Japan veel vanzelfsprekender dan in Europa. Die traditie staat overigens onder toene­mende spanning. Van de hand van Ichiro Ozawa, een van de politici die de Liberaal Democrati­sche Partij in Japan de rug heeft toegekeerd, ver­scheen een boek waarin hij pleit voor ‘verwestersing’: indivi­dualisering (van het conformistische onderwijs), meer binnen­landse con­sumptie en kortere werktij­den.

Lopez hoont elk beroep om rekening te houden met concurrentiefactoren die buiten de invloed van het management liggen, weg als ‘een intelli­gent excuus’ om niets te doen. Maar het is inte­ressant om te weten dat lean production in optimale vorm wellicht alleen is te berei­ken in een arbeidscultuur die in Europa niet be­staat, maar die ook in Japan haar langste tijd heeft gehad.

De voorstanders van het concept, zoals Lopez en de mensen bij NedCar, wijzen op de taakverbreding, waardoor het werk meer zingeving krijgt en minder eento­nig wordt. Maar een bedrijfskundige zoals prof.ir. Jan in ’t Veld wijst vooral op de verkorting van de cyclustijden van ar­beidshandelin­gen in lean production (30 tot 60 seconden) die juist vervreemdend werkt – kortcy­clisch werk is het wezensken­merk van de klassieke massaproduk­tie. In dat verband is lean pro­duction ook wel een moderne variant van massaproduktie ge­noemd (superfordisme) en niet de ‘derde industriële revolutie’ zoals Lopez meent, want die voltrekt zich niet in de traditio­nele industrieën maar veeleer in de dienstensector en informa­tie-industrie. Daar worden lange lineaire processen met veel specialistische stappen ‘heront­worpen’ tot bij voorkeur één-stapsprocessen, waarbij informa­tiewerkers alle benodigde speci­alistische deel­informatie (via een computernetwer­k) naar zich toe halen.

 

Assemblageproces

De parallel van de één-stapsprocessen in de informatie-industrie is in de automobielindustrie de stationai­re assemblage, door Volvo (sic!) geïntroduceerd in haar fabriek te Uddevalla. Daar werden aangevoerde bouwkits door een team op één vaste plaats tot auto opgebouwd. Vol­gens het MIT (Massachusetts Institute of Technology) was dit fundamenteel fout, omdat Volvo van massaproduktie terugkeerde naar pre-industri­le, ambachte­lijke, autoproduktie: alle ‘kromme’ onderdelen konden dank zij de lange cyclustijd door het bouwteam worden ‘rechtge­timmerd’, zoals vroeger de blik- en koperslagers koetsdelen met de hand ‘in vorm’ sloe­gen, waardoor elke koets een unieke vorm had maar er geen constante kwali­teit was.

Het rework, fouten ­herstellen, werd in Uddavalla geïncorporeerd in de produk­tie zelf, terwijl het in massaproduk­tie gebeurt na de assemblage (op het rework station); lean production beoogt de fouten uit te bannen.

Kortcyclisch werk heeft dan als voordeel dat produkt- en procesfouten eerder manifest worden omdat de arbeider zijn handeling niet binnen de gestelde tijd kan verrichten en (letterlijk) aan de bel trekt (bij Toyota in het uiterste geval de hele lijn stilzet). Maar dat stationaire assemblage langcyclisch is, hoeft volgens dr. Dankbaar nog niet te betekenen dat het niet lean kan: het Volvoprodukt van destijds (Uddevalla sloot in 1993) was nu eenmaal niet ontworpen voor deze wijze van assembleren: ook het ontwerp moet lean zijn, dat wil zeggen gemakkelijk te assembleren. Het nadeel van het lagere werk­tempo in de langere cyclus van stationaire assemblage wordt terugverdiend doordat er geen afstemverliezen zijn, zoals in een assemblageproces dat in zeer korte, maar daarom ook zeer veel stap­pen is geknipt. Juist omdat het er zo veel zijn, kunnen die stappen nooit allemaal goed op elkaar worden afgestemd.

Afgezien van het feit of lean produceren zowel met kort- als langcyclische handelingen kan, geldt dat aan het concept van lean production dat van kaizen zit vastgebakken: het in kleine stappen stelselmatig verbeteren van het bestaande proces, uitgaan van proven technology en niet ‘even negentig graden uit de flank gaan’, zoals ir. M. Uijterlin­de bij NedCar zegt. In schril contrast hiermee staat het totaal herontwerpen van bedrijfsprocessen zoals dat momenteel opgeld doet in de typische kantooromgeving in vooral de VS (banken, verzekeringsbedrijven en andere dienstverlenende b­edrijven). Zulke bedrijven hebben minder affiniteit met staps­gewijze voortbrengingsprocessen en hebben geen grote investe­ringen gedaan in tradi­tionele machines en gereedschap.

De vraag is of Europeanen de Japanners via stelselmatige verbeteringen kunnen inhalen, ook al gaat de ‘Westerse kaizen’ zoals het Kontinuierliches Verbesserungs Program bij Volkswagen uit van aanmerkelijk grotere (meer creativiteit vereisen­de) produktiviteitssprongen. In Japanse produktieprocessen ligt decennia-lange ervaring met kleine verbeteringen opgeslagen. Het via continue verbeteringsprogramma’s streven naar slanke produktie lijkt eerder het best haalbare dan het ideale.

 

 

 

 

 

(KADER)

NedCar: twee automerken op één produktielijn

 

Over een paar maan­den gaat NedCar in Born op één assemblagelijn Volvo’s èn Mitsubis­hi’s maken: een unicum in de automobiel­industrie. De organisatie moet daarvoor ingrijpend veranderen. Met hetzelfde aantal werknemers (4000) gaat NedCar twee keer zo veel auto’s maken: 180 000 tot maximaal 220 000 per jaar. Op het toppunt van de produktie van de Volvo 300-serie maak­ten 11 000 men­sen ongeveer 135 000 auto’s per jaar: 40 uur per auto.

Het beëindigen van de ‘300’-produktie in maart 1991 schiep fysieke ruimte voor het opzetten van een nieuwe assemblagelijn. Dit p­ro­ject ‘M’ vergt een investering van 1,8 miljard gul­den, plus nog eens een miljard gulden voor de ontwikkeling en afstemming van de twee nieuwe autoprojecten. Op de lijn kunnen vier (twee Volvo- en twee Mitsubi­shi-) modellen worden gemaakt. De produktie zal 45 auto’s, en later maxim­aal 53 auto’s per uur bedra­gen. De assembla­ge­tijd gaat van 28 uur nu naar 23 uur en uiteindelijk (na vier jaar) naar 17 uur per auto.

Om dat te bereiken moet de auto gewoon sneller in elkaar worden gezet. Daarmee is rekening gehouden bij het ontwerpen. ‘Zo ligt de fouttolerantie van de afmetingen binnen 1 m­m; nu is dat nog 1,5 mm’, aldus ir. M. Uijterlinde, proces engineer bij NedCar. Het dashboard zit bij alle vier de model­len op dezelfde vier punten vast. De 700 bouten en moeren zijn op acht na iden­tiek voor alle vier de modellen.

De voor de vier modellen gemeenschappelijke bodemplaat, het platform, is een Mitsubishi-ontwerp dat vol­doet aan de botseisen van Volvo. Op dit platform ontwierp Mitsubishi zijn model­len met M-CAD en NedCar de nieuwe Volvo-serie met Catia, dat compatibel is met M-CAD.

De machine die de zijwanden tegen de bodemplaat aan zet, bestaat uit vier­zijdige (kubusvor­mige) mallen die al naar gelang het te bouwen model de zijde met daarop de ge­vraagde zijwand naar de bodem­plaat toedraaien. Een computersysteem bestuurt cen­traal het proces en weet dank zij het beginsel van first in first out (het handhaven van de beginvolgorde door alle pro­cesstap­pen) precies waar een auto in wording zich op enig moment bevindt en welke onderdelen dan afgeroepen moeten worden in het eigen magazijn en bij de toeleveranciers. Op een aantal ijkpunten wordt de juist­heid van de centrale besturing geveri­fieerd door een barcode op de passerende auto’s te lezen.

Snellere pro­duktie moet ook worden bereikt door het aantal storingen en produktmanco’s terug te dringen. Daarom zijn voor het stansen en persen twee nieuwe machines aangeschaft voor 100 miljoen gulden bij Hitachi-Zosen, waarin jarenlange kaizen (systematisch perfectioneren van het ontwerp) is ver­werkt: technologie die zich (in Japan) al heeft bewezen.

De hogere graad van automa­tisering in deze persen zorgt ervoor dat het totaal aantal persslagen per jaar van 30 miljoen naar 48 miljoen gaat. Momenteel wordt een carrosseriedeel gevormd in een persstraat die bestaat uit zes in serie opgestelde persen, waar de plati­nes, het plaatmateriaal, met de hand wordt in- en uitgevoerd.

De nieuwe Hitachi-Zosen CCFT-pers (Crossbar-Cup Feed Transfer) voert in één handeling steeds vijf bewerkingen tegelijk uit. Dat gaat veel sneller, maar het stelt grenzen aan de vervorming van het plaatmateriaal. Een carrosseriedeel kan nooit in één keer in zijn definitieve vorm worden geslagen. Dat gebeurt altijd in etappes. De vervorming is nu begrensd door vijf bewerkingen in plaats van zes bewerkingen, waarmee in het ontwerp rekening moest worden gehouden. Het ver­wis­selen van mallen kost nu 15 tot 30 minu­ten, bij de nieuwe pers­ma­chines nog slechts 6 minuten. Het aantal uren dat nodig is om een com­plete carrosserie te vormen gaat van 2,5 naar 1,25.

Meer nog dan Volvo besloot Mitsubishi zich ingrij­pend te bemoei­en met de organisatie van de autoproduk­tie in Born. Door de bemoeienis van Norio Takehara, die Mitsubishi vertegenwoordigt in de Raad van Bestuur van NedCar, is het concept van de vier zelfstandige produktie-eenheden (pershal, carrosserie­bouw, lakstraat en samenbouw) uit 1989, in 1993 weer ­deels verlaten en heeft men weer gekozen voor een klassieke functionele orga­nisatie met een centrale afdeling voor personeelszaken en finan­ciën.

NedCar handhaaft wel de, eveneens in 1989 binnen de produktie-units ingevoerde, zelfstandige taakgroe­pen met gede­legeerde verantwoordelijkheid voor deelprocessen. Die groepen leiden weliswaar tot taakverbreding en verantwoorde­lijk­heidsbesef, maar volgens de Japanners in beperkte mate, namelijk alleen binnen de groep. Taakgroepen hebben de neiging een eigen voorraadje gereed produkt aan te leggen ‘voor het geval dat’ en verstoren daar­mee het one piece flow-proces. In de Japanse notie omvat de taak van de groep het totale proces van NedCar.

‘Individuele produktiemedewerkers worden via scholing gestimuleerd werkwijzen en uitrusting voortdurend te verbeteren. Ze plegen straks deels zelf het onderhoud en hebben de be­voegd­heid om zelf verbeterin­gen (te laten) aanbrengen aan de machi­ne, die de onderhoudsge­voe­ligheid verminderen’, aldus ir. P. de Bruin, general manager produktie bij NedCar. Tien pro­cent van de medewerkers is voor training in Japan geweest. Wat kwaliteit betreft wil NedCar naar 1,6 opmerkingen als een klant na 20 000 km bij de dealer terugkomt. Die gebre­ken mogen niet groter zijn dan een los stiknaadje in de bekle­ding of een kapot lampje. Nu zijn er nog vier opmer­kin­gen per wagen.

 

 

 

 

 

(BIJSCHRIFTEN)

 

(BIJ OPENINGSDIA)

Om lean production mogelijk te maken moet bij het ontwerpen al rekening worden gehouden met het assemblageproces.

(Foto: NedCar, Born)

 

(BIJ PORTRETFOTO)

De wurger van Rüselsheim, José Ignatio Lopez: ‘We stellen niet langer de produktie centraal, maar de klant.’

(Foto: Paul Voorham, Voorburg)

 

(BIJ DIA)

Ontwik­kelings- en assem­blage­kosten verte­genwoordi­gen slechts een kwart van de waarde van een auto; de helft van de kosten zit in het inkopen van onderde­len.

(Foto: NedCar, Born)

 

(BIJ DIA IN KADER)

(Foto: NedCar, Born)

 

 

 

(SCHEMA)

Tijdschema produktontwikkeling NedCar

 

(Maanden) -10  -6   -1   1    6    12   18   24   30

 

Development proposal Model approval Fase 1-drawing Fase 2-drawing Production-drawing   Final drawing  Sale

 

t    t    t    t    t    t    t

 

Styling   Styling concept #1 Styling #2 Styling Final styling  Coloring

 

l    l    l    l    l

 

Designing Tooling design F1 design F2 design

 

Prototype building   T-prototype    F1 proto  F2 proto

 

Testing   T-testing F1 testing F2 testing

 

Production Drawing for study of production     Drawing for cutting die   Drawing for production    Final drawing for production    Quality audit

 

P0   P1   P2   Volume production

 

(Bron: NedCar, Born, 1994)

Juridische consequenties van Rijksoctrooiwet – Nieuwe wet vereenvoudigt octrooieren (1994 21)

quookermaxresdefault

 

1994 21

(Streamer)

PER 1 APRIL 1995 NIEUWE WET WAARSCHIJNLIJK VAN KRACHT + GOEDKOPER EN SNELLER VERKRIJGEN VAN OCTROOI + MEER GESCHILLEN VOOR RECHTER

 

(Bovenkop)

Juridische consequenties van Rijksoctrooiwet

 

(Kop)

Nieuwe wet vereenvoudigt octrooieren

 

(Intro)

Naar het zich nu laat aanzien wordt 1 april 1995 de nieuwe Rijksoctrooiwet van kracht, die het verkrijgen van octrooi sterk vereenvoudigt. De wet, begin 1994 door de Tweede Kamer aangenomen, schakelt de bescherming van de uitvindingen gelijk met die van overig intellectueel eigendom.

– Erwin van den Brink –

 

(Credit auteur)

De auteur is redacteur van De Ingenieur.

 

 

Een onderneming die er zeker van wil zijn dat zij haar toekomstige octrooien juridisch kan beschermen en ongestoord kan exploiteren, moet voordat zij met onderzoek begint zich eerst oriënteren in de octrooiliteratuur. Die geeft uitgebreide informatie over technologie die anderen ontwikkelen of hebben ontwikkeld. Zo voorkomt men nodeloos, want doublerend, onderzoek en een hoop financiële ellende doordat men inbreuk maakt op bestaande octrooien. Omgekeerd stelt een octrooi eigen investeringen veilig.

Een octrooi is een tijdelijk, exclusief, gebruiksrecht van een uitvinding. Zonder deze juridische bescherming tegen plagiaat zou het erg moeilijk worden om investeringen in onderzoek terug te verdienen. De namaker heeft immers geen ontwikkelingskosten gehad. Hij kan daardoor onder de kostprijs van de uitvinder produceren en een flink stuk van de markt wegkapen.

Een octrooi maakt de investering ook lonend omdat het verhandelbaar is als licentierecht. Bovendien stelt een eenmaal verleend octrooi de ondernemer vaak in staat investerings‑ en risicokapitaal aan te trekken.

Dank zij de juridische bescherming hoeven uitvindingen niet angstvallig geheim te worden gehouden. Elke geoctrooieerde uitvinding wordt dan ook openbaar, zodat iedereen er kennis van kan nemen. Octrooi‑informatie geeft daardoor een goed en volledig beeld van de stand der techniek waarmee elke innoverende ondernemer zich nodeloos onderzoekwerk en schadeclaims van derden kan besparen.

 

Inventief en toepasbaar

Per jaar worden over de hele Wereld ruim een miljoen octrooiaanvragen ingediend, die vrijwel allemaal na anderhalf jaar ter inzage liggen. In Nederland is al deze informatie te raadplegen in de bibliotheek van het Bureau voor de Industriële Eigendom (BIE) in Rijswijk, ressorterend onder het ministerie van EZ. Het BIE heeft on-line databases en cd-rom‑schijven waarmee men op trefwoord of naam kan zoeken. Octrooiaanvragen zijn ingedeeld op basis van hun technische kenmerken, volgens de zeer gedetailleerde International Patent Classification (IPC). Octrooien vormen dus een volkomen geactualiseerd bestand dat betrouwbaar, openbaar, uitstekend geïndexeerd is en alle gebieden van de techniek omvat. Maar liefst 90 % van deze informatie is niet terug te vinden in de gewone vakliteratuur!

Een octrooieerbare uitvinding moet nieuw, inventief en industrieel toepasbaar zijn. Nieuw wil zeggen dat het produkt of proces vóór de datum van indiening van de octrooiaanvraag nergens ter Wereld openbaar bekend mag zijn, ook niet door toedoen van de uitvinder zelf, bijvoorbeeld door een bedrijfsbrochure of presentatie op een beurs. Met inventiviteit wordt bedoeld dat de vinding voor de vakman niet voor de hand mag liggen, met industriële toepasbaarheid dat het moet gaan om een technisch, aantoonbaar functionerend, produkt of produktieproces: een perpetuum mobile voldoet hier bijvoorbeeld niet aan. Diensten, natuurwetenschappelijke theorieën, ideeën zonder concrete uitwerking en esthetische ontwerpen zijn niet met een octrooi te beschermen. Dan geldt bescherming door auteursrecht of het modellen‑ en merkenrecht.

Wie kiest voor octrooibescherming dient een aanvraag in bij het Bureau voor de Industriële Eigendom. In de huidige wetgeving toetst dan de Octrooiraad (een onderdeel van het BIE) de aanvraag. Een eenmaal door de Raad verleend octrooi is dan ook een stevig wapen tegen de concurrentie. Nadeel is echter dat deze procedure veel expertise, tijd en dus geld vergt. Dit vormt voor veel ondernemers soms een te hoge drempel.

 

Octrooiaanvraag

De regering heeft onder invloed van internationale ontwikkelingen besloten de Rijksoctrooiwet drastisch te vereenvoudigen. De kostbare en tijdrovende toetsing verdwijnt uit de verleningsprocedure. Het gevolg is evenwel dat het onduidelijker is welke rechten men exact heeft en mag uitoefenen.

Ook al verdwijnt de toetsing, voor de aanvrager van een octrooi na 1 april 1995 blijven de materiële eisen (nieuwheid, inventiviteit, industriële toepasbaarheid) even stringent van toepassing. De toetsing vindt immers, in geval van conflict, uiteindelijk plaats bij de rechter, evenals bij schendingen van auteurs-, merken- of modellenrecht.

De aanvrager moet kiezen tussen een octrooi met een maximum duur van zes of twintig jaar. Wie een twintigjarig octrooi wil, moet binnen dertien maanden na aanvraag om een nieuwheidsonderzoek vragen. De resultaten hiervan geven een indicatie over datgene wat al bekend was en waar eventueel nog octrooirechten op rusten. Wie dat niet doet, krijgt automatisch een zesjarig octrooi.

Een aanvraag voor een zesjarig octrooi wordt na achttien maanden toegekend en ingeschreven in het register. Dit geeft een geldige aanspraak op het exclusieve recht zoals de houder dat zelf ‑ al dan niet met de hulp van een octrooigemachtigde ‑ heeft aangevraagd. Eventueel is met een spoedprocedure binnen twee maanden een zesjarig octrooi te verkrijgen.

Wie een twintigjarig octrooi wenst, kan binnen zes tot negen maanden na het verzoek om het nieuwheidsonderzoek resultaat verwachten. In een aantal gevallen zal de uitvinder op grond van gevonden (wellicht bezwarende) literatuur de aanvraag moeten herschrijven tot een beter houdbaar octrooi. Pas daarna kent de Octrooiraad het toe. De inschrijving laat echter nooit meer dan achttien maanden (vanaf aanvraag) op zich wachten, ongeacht het feit of het nieuwheidsrapport is uitgebracht of herschrijving heeft plaatsgevonden. Alle octrooien worden ongeacht geldigheidsduur in principe na achttien maanden gepubliceerd.

 

Inbreuk

De nieuwe procedure is niet alleen sneller en eenvoudiger maar ook goedkoper: inclusief de kosten voor een octrooigemachtigde, zal men ongeveer 10 000 gulden voor het twintigjarige en 6000 gulden voor het zesjarige octrooi moeten uittrekken. In de oude situatie bedroegen de kosten ongeveer 15 000 gulden.

De consequentie van deze voordelen is echter dat degenen die in een gerechtelijk geschil terechtkomen (als eiser of aangeklaagde) een langere weg hebben te gaan dan in de oude situatie, omdat eerst moet worden vastgesteld wat het octrooi exact omvat.

Alle octrooiprocedures in Nederland spelen zich af voor de rechtbank in Den Haag (eventueel in kort geding). Een octrooihouder die iemand van inbreuk wil beschuldigen, moet die persoon eerst een bericht sturen dat hij inbreuk pleegt en moet stoppen. Daarna kan een dagvaarding worden uitgebracht. Indien men ook schadevergoeding wenst, zal hier nog een zogenoemd desbewustheidsexploit aan vooraf moeten gaan. Een door het BIE uitgebracht nieuwheidsrapport is verplicht voor het voeren van een rechtszaak (ook bij een zesjarig octrooi).

Doordat het octrooi vóór toekenning niet meer wordt getoetst, bestaat het gevaar dat een ongeldig octrooi (namelijk op een reeds bestaande uitvinding of inbrekend op een nog geldig octrooi) wordt toegekend. Iedere belanghebbende kan derhalve op elk moment een juridische procedure beginnen om een toegekend octrooi nietig te verklaren. De klagende partij moet de rechter dan voorzien van een advies van het Bureau voor de Industriële Eigendom.

Wie anderzijds meent onterecht van inbreuk te worden beticht, kan een procedure overwegen om die klacht nietig te verklaren. Er leiden vier wegen naar zo’n nietigverklaring.

Ten eerste: de gewraakte activiteit valt niet onder het door de klagende partij aangevoerde octrooi.

Ten tweede: de aangeklaagde partij vordert nietigverklaring van het octrooi als de ongeldigheid goed beargumenteerd kan worden. De rechter zal zijn definitieve oordeel over de inbreuk waarschijnlijk opschorten totdat over de nietigheid is beslist.

Ten derde: er is geen sprake van inbreuk, want de beklaagde paste de door de klager geoctrooieerde uitvinding al eerder, zij het onopgemerkt, toe (recht van voorgebruik).

Ten vierde: er is sprake van een afzonderlijk octrooieerbare verbetering van het (basis-)octrooi. De houder van het oudere basisoctrooi moet dan een (dwang)licentie geven – tegen betaling weliswaar.

 

Europees octrooi

Het gevaar dat men zonder opzet inbreuk maakt, is groter voor degenen die een zesjarig octrooi aanvragen. Die hebben immers niet de beschikking over een nieuwheidsonderzoek. Voor deze aanvragers geldt des te meer dat zij de waarde of geldigheid van het gewenste of verkregen octrooi zelf of samen met een deskundige, octrooigemachtigde, bepalen. In Nederland zijn tientallen bureaus met deze deskundigheid gevestigd. Een goede afweging voorkomt een hoop narigheid.

Wie in Nederland octrooi aanvraagt, kan daarna een jaar lang die aanvraag ook in andere landen indienen. Daarvoor geldt dan met terugwerkende kracht de datum van aanvraag in Nederland. Dank zij dit voorrangsrecht kan de aanvraag een jaar lang ook in het buitenland (de staten aangesloten bij het Europese Octrooiverdrag) niet worden geschaad door publikaties of handelingen van anderen (of van de aanvrager zelf die bijvoorbeeld exportmarkten verkent). Elke openbaarmaking kan immers afbreuk doen aan de nieuwheid of inventiviteit.

Het Europese Octrooiverdrag maakt het mogelijk om met één procedure in verscheidene landen octrooi te verkrijgen. Er hebben zich momenteel zeventien landen bij dit verdrag aangesloten. Deze procedure wordt uitgevoerd door het Europese Octrooibureau (EOB). De procedure van het EOB duurt drie tot vier jaar en leidt tot een octrooi dat wèl inhoudelijk is getoetst. De aanvrager moet aangeven voor welke landen hij het octrooi wil laten gelden. Als hij Nederland aanwijst en hiermee een solide getoetst octrooi voor Nederland verkrijgt, kan een eventueel eerder verleend ongetoetst Nederlands octrooi vervallen.

Een Europees octrooi leidt tot een reeks nationale octrooien. Dit is nodig om zonodig in elk land onder nationaal recht te kunnen procederen. De kosten van een Europees octrooi (inclusief de kosten voor een gemachtigde en de nationale vertalingen) zijn minimaal 50 000 gulden.

 

Informatie bij: Centrum voor Kennisbescherming en Octrooi-informatie (CKO), postbus 5821, 2280 HV Rijswijk, tel. (070) 319 20 19. Uitgebreider informatie over de nieuwe Rijksoctrooiwet is voor leden van KIvI en NIRIA toegankelijk via het Ingenieursnetwerk.

 

 

 

(KADER)

Commercialisatie

 

Over alle aspecten die betrekking hebben op de ontwikkeling en/of commercialisatie van nieuwe produkten kunnen bedrijven en particulieren adviezen krijgen bij het Specialistisch InnovatieCentrum voor Uitvindingen ID-NL. Het centrum zorgt voor vakkundige begeleiding en is intermediair bij het onderbrengen van de honderden zinvolle ideeën betreffende produkten of procédés die het jaarlijks krijgt aangeboden. Informatie: ID-NL, Westblaak 43, 3012 KD Rotterdam, tel. (010) 413 63 33.

 

 

 

(BIJSCHRIFTEN)

 

(BIJ GROTE STOCKDIA, ALS OPENING)

De nieuwe Rijksoctrooiwet maakt het verkrijgen van een octrooi eenvoudiger, sneller en goedkoper.

(Foto: Phil Jason/World View, Amsterdam)

 

 

(BIJ FOTO)

Een octrooieerbare uitvinding moet nieuw, inventief en industrieel toepasbaar zijn; op de foto de Quooker, een soort boiler, waarmee direct water van 100 °C beschikbaar is, dat gezuiverd en goed doorgekookt is.

(Foto: ID-NL, Rotterdam)

 

(BIJ DIA)

De kokersnijder, een uitvinding van Aannemersbedrijf Van der Worp, waarmee lege kitpatronen in de lengterichting doorgesneden kunnen worden. Doorgesneden kokers, waarin zich resten opgedroogde kit bevinden, kunnen als bedrijfsafval aangeboden worden, in tegenstelling tot niet-doorgesneden kokers, die door inzamelaars van afval steeds vaker tot chemisch afval worden gerekend.

(Foto: ID-NL, Rotterdam)