Tag archieven: antropogene

Klimaatdebat mmv ministerie VROM bij KIVI, 1996 met prof. dr. Jan Kommandeur, prof. dr. ir. Pier Vellinga, dr. Frits Bottcher e.v.a.

 

klimaatdebat1996_1

Hier klikken voor de PDF:    klimaatdebatComb

HET WORDT ENKELE GRADEN WARMER + NEDERLAND KAN DE GEVOLGEN AAN + BEDREIGING VOOR KLEINE EILANDSTATEN + MAATREGELEN HEBBEN PAS OVER 10…20 JAAR EFFECT + KLIMAATVERANDERING DUURT 50..­.200 JAAR + GEEN GROTE STORMEN + GEEN AMERS­FOORT AAN ZEE

 

Broeikastheorie kent veel meer onzekerheden dan zekerheden

 

Over geloof en weten in het CO2-debat

 

De Klimaatnota van de regering, die deze maand verschijnt, en de publikatie van het 1995-rapport van de IPCC (the Inter­go­vern­mental Panel on Climate Change) hebben de kwestie van het broeikaseffect weer aan de orde ge­steld. Het valt daarbij op dat maar weinig Neder­landsta­lige litera­tuur be­schik­baar is, waarin duidelijk wordt uiteen­gezet wat het broeikasef­fect nu eigen­lijk is. Dat maakt het moeilijk om tot een afweging te komen. Voor een beter geïnformeerde me­ning­vor­ming moeten we feiten scheiden van aannamen en veron­derstellingen.

– Prof. dr. Jan Kommandeur –

 

De auteur is emeritus hoogleraar fysische scheikunde van de Rijks Universiteit Groningen.

 

Hoe komt de Aarde aan zijn temperatuur? Onze planeet is een door vacuüm zeer goed geïsoleerde bol die vrijwel alleen door de Zon wordt verwarmd. Hoe groot is het vermogen dat op de Aarde wordt ingestraald? Als eenheid nemen we de hoeveelheid ener­gie die per seconde door een loodrechte denkbeeldige kolom dampkring met een doorsnede van één vierkan­te meter vloeit: de fluxdicht­heid (S). De hoeveelheid zonne-energie die zo de Aarde bereikt, is S = 1368 watt per m2.

 

De blote Aarde

De Aarde presen­teert aan het zonlicht een opper­vlak­te van πR2, waarin R de straal van Aarde plus de atmosfeer is. Het door de Aarde ontvangen vermo­gen van de Zon is dus πR2S. De totale opper­vlakte van de Aarde is 4πR2. De over tijd en ruimte gemid­delde flux aan de rand van de atmosfeer is dus ¼S = 342 Wm-2. Van deze inkomen­de stra­ling wordt 31 %, dat is 106 Wm-2, door het aardsys­teem gereflec­teerd en dus wordt er gemid­deld 236 Wm-2 aan zonnestra­ling door Aarde en atmosfeer geabsor­beerd.

In de stationaire toestand, als de tempera­tuur van de Aarde constant blijft, moet ook gemiddeld 236 Wm-2 aan infra­rode (IR) straling (‘warmte’) de Aarde verlaten. Daardoor heeft de Aarde een eindige temperatuur. Die kunnen we bereke­nen door de Aarde op te vatten als een bron van infrarode straling met een spectrum dat wordt gege­ven door de Wet van Planck. Door nu de energieën bij alle golflengten bij elkaar op te tellen, krij­gen we de wet van Stefan-Boltzmann: W = σT4, waarbij σ de stra­lings­con­stante (5,67032 x 10-8 Wm-2) is, T de absolute tempe­ra­tuur en W het uit­gezon­den vermogen zijn. Eenvoudig invullen levert voor W = 236 Wm-2 een tempe­ratuur van 254 K. Van grote afstand ziet de Aarde er dus uit als een bol met een tempera­tuur van 254 K ofwel -19 °C. Al deze waarden zijn nauw­keurig tot op één of twee eenheden, reden waarom men ook wel -18 °C als ‘stralings­tempera­tuur’ ziet.

Ruwweg wordt onze bereke­ning beves­tigd door metingen van de temperature­n op de Maan, die immers ‘bloot’ is.

 

 

De aangeklede Aarde

Gelukkig is -19 °C niet de gemiddelde temperatuur waarbij wij moeten leven. Want er is meer aan de hand dan het stralings­evenwicht. Er is namelijk het broeikas­effect. Dat de gemid­del­de temperatuur op Aarde reeds jaren ongeveer 15 °C is, dus 34 graden hoger dan de ‘stralingstemperatuur’, is aan dat effect te danken.

Wat is het nu precies, dat broeikasef­fect? Daarvoor moeten wij eerst de samenstel­ling en de temperatuur­verde­ling van de atmosfeer bekijken.

De atmosfeer bestaat ruwweg voor 4/5 deel uit stikstof (N2), 1/5 uit zuurstof (O2) en 1 % uit het edelgas argon. Daarnaast bevat de dampkring zogenoemde broeikasgas­sen waaronder water (H2O), het verbran­dingsgas (ook wij ademen het uit) ­ko­olstofdi­oxide (CO2), methaan (CH4), lachgas (N2O) en ozon (O3). Deze broeikas­gas­sen hebben de eigen­schap in hun molecu­laire tril­lingen infrarood licht te absorbe­ren omdat ze asymmetrisch zijn; ze bestaan uit verschillende atomen. Zuurstof (O2) en stikstof (N2) bestaan elk uit twee identieke atomen en absor­beren geen infrarood vanwege hun symme­trie.

Naast de samenstelling is het verloop van de temperatuur in de atmosfeer over verschillende hoogten belangrijk. Aan het aardop­pervlak heeft de atmos­feer een gemiddelde tempera­tuur van 15 °C. Zij koelt vervol­gens 6 °C per km af tot op onge­veer 14 km hoogte een mini­mum van pakweg -70 °C wordt bereikt. Dit niveau heet de tropo­pauze. Hieronder spreken we van tropo­sfeer, daarboven van stratosfeer. Als we in de stra­tosfeer komen en we blijven doorstijgen, dan zal de tempera­tuur weer toenemen met zo’n 2 °C per km. Dat komt doordat de daar aanwe­zige ozon inkomend ultraviolet licht absorbeert. Die tempe­ratuur­stijging­ gaat door totdat geen omgevingstempera­tuur meer gemeten kan worden omdat de atmos­feer daarvoor dan te ijl is.

De pure stralingsafkoeling van de troposfeer bedraagt ongeveer 1 °C per dag, voor ongeveer 80 % veroorzaakt door straling die afkom­stig is van waterdamp. Maar ook de afwezig­heid van water­damp kan een rol spelen. Daardoor kan de Aarde ongehin­derd naar het heelal stralen. In een woestijnnacht is dat duidelijk merk­baar; het koelt dan snel af. Wéér moet worden opge­merkt dat de getallen gemid­delden zijn. Zeker het latente verticale trans­port kan in sommige gebieden oplo­pen tot meer dan tien maal de gegeven waarden. Het overschot wordt afgevoerd door hori­zonta­le lucht­circulatie. Sommigen hebben daarom voor­speld dat een extra broeikaseffect tot grote stormen zou leiden, maar dat is zeer speculatief.

 

Modellen

Het globale begrip van de atmosfeer is empirisch goed ontwik­keld. Dat wil niet zeggen dat ­men de gevolgen van veranderin­gen een­voudig kan uitre­kenen. Daar­voor is het systeem veel te ingewikkeld. Te meer omdat er complexe zogenoemde mee- en tegen­koppelingen in voorko­men. Om tot kwan­titatieve uitspra­ken te komen moet men gebruik maken van (grote) compu­ters.

De oudste modellen waren globaal. Zij hadden een wereld­wijd karak­ter. Alles werd uitgere­kend aan de hand van gemid­delden voor de hele Aarde. Dat schept problemen. Het CO2-gehalte zal wel zo’n beetje overal gelijk zijn, alhoe­wel de seizoenschom­me­lingen die men overal heeft gemeten wel aangeven dat de men­ging (wereld­wijd) op termijn van één jaar niet volledig is. Maar hoe zit het met de gemid­delde tempera­tuur? Hoe dicht moet het net zijn waarmee men die meet en hoe moet men de getallen wegen met het oppervlak waarvoor ze kenmer­kend worden geacht? Of moet men de meetdichtheid blijven verho­gen totdat het niets meer uitmaakt als men meetpun­ten toe­voegt? Het lijkt erop dat men dat punt nu heeft bereikt, maar is dat waar voor alle andere gege­vens waar­over men dient te beschikken? Na­tuur­lijk heeft men de beschik­king over satellietgegevens over de wol­ken­be­dek­king, maar kan men altijd nauw­keurig hun reflecti­vi­teit voor kortgolvige straling en absorptiever­mo­gen voor langgol­vige straling bepalen? En voor globale modellen: welke rol speelt de structuur in de wolkbedekking die op wereld­schaal niet kan worden meege­nomen? Vragen te over.

Overigens bestaan er ook zekerheden. De albedo (= weerkaat­sing) van de Aarde (0,31) is goed bekend, evenals de samen­stel­ling van de damp­kring en de optische eigenschap­pen van de samen­stel­lende delen. Die eigenschappen zijn bijvoorbeeld hun brekingsin­dex voor kort­gol­vig licht om de strooiing ervan te berekenen en hun absorp­tiebanden in het infra­rood.

Met deze absorptie is overi­gens voor de in wat hogere concen­tratie aanwezige gassen zoals CO2, CH4 en N2O nog iets bijzon­ders aan de hand. Welis­waar is er tot op een hoogte van 14 km slechts een geringe concen­tratie van deze gassen, maar er is toch zoveel CO2 aanwezig dat alle infraroodemissie van de Aarde in het golflengtegebied tussen 13,7 μm en 16 μm al in de eerste 100 meter wordt opgenomen in de atmosfeer­. Dat heeft sommi­gen ertoe verleid te stellen dat deze absorptie al is ‘verzadigd’ en dat verder toevoegen van CO2 geen effect zou hebben. Dat is niet juist.

Als we de mate waarin infrarood wordt geabsorbeerd, afzetten tegen de golfleng­ten, dan krijgen we een klokkrom­me: in het midden van het golfleng­tegebied is zij het hoogst. Naar de flanken (13,7 μm en 16 μm) wordt zij wel minder, maar er blijft een zekere mate van absorp­tie bestaan. Deze flankab­sorptie verzadigt veel minder gauw, omdat zij zo veel zwakker is! Wel wordt het effect van een toena­me van CO2 minder naar­mate er meer van is. Daarom wordt het stralingsef­fect ten gevolge van CO2 als een loga­ritmi­sche term voor de absorp­tie aan de flanken meege­no­men (zie afbeelding 2a).

Een dergelijk verschijnsel doet zich voor bij methaan. Ook daar treedt een zekere ‘verzadiging’ op, maar veel minder sterk, zodat het stralingseffect met een vierkants­wor­tel afhankelijkheid kan worden beschreven. Tevens moet er rekening gehouden worden met overlappende absorpties zoals van CH4 en N2O. Dáárvoor worden dan ook gewogen mengtermen in de bereke­ningen meegeno­men. Alle andere broeikasgas­sen zijn van een dermate grote verdunning dat ze een­voudig lineair kunnen worden behan­deld: twee keer zoveel gas, twee keer zo groot de absorptie van aardse infraroodstra­ling.

Tot nu toe bespraken we alleen de zogenoemde directe effecten van infraroodabsorp­tie door CO2 en andere BKG’s (broeikasgas­sen). Er zijn echter veel mee- en tegenkop­pelin­gen denkbaar, zelfs op wereld­schaal, die de modellen sterk niet-lineair maken. We noemen er hier een paar: hogere temperaturen beteke­nen in eerste instantie minder wolkvor­ming, dus een grotere zonin­straling en dus een meekoppe­ling, een vererge­ring. Een ander gevolg van temperatuurverandering zou kunnen zijn dat het ijs van gletsjers maar vooral van de poolkappen zou gaan smelten. Daardoor wordt de Aarde minder wit en dus minder weerkaatsend. Zij zal als een zwarte zonne­collector meer zonlicht opnemen. De temperatuur stijgt nog meer, een klassiek geval van meekoppeling, waardoor grote veran­deringen zouden kunnen plaats­vinden.

Maar hogere temperatuur betekent ook hogere luchtvochtigheid. Nu is het aan de polen nog erg droog. Als vochtige lucht daar naar toe zou worden getrans­porteerd, kan men veel meer sneeuw verwachten, waardoor de witheid en dus de weerkaatsing van de Aarde zou toenemen, waardoor de temperatuur zou afnemen. Een klassiek geval van tegenkoppeling dus: alle verande­ringen worden min of meer afgeremd.

Wat overheerst? Het zal duidelijk zijn: alleen zeer gedetail­leerde beschou­win­gen, uitgaande van zeer goed gevalideerde gegevens kunnen met zekerheid uitsluitsel over deze dilemma’s geven.

 

Stralingsforcering

Als de temperatuur van de Aarde gemiddeld constant is, heerst er in de strato­sfeer gemiddeld stralingsevenwicht: de inkomen­de stralingsenergie van de Zon is gelijk aan de uit­gaande infrarode stralingsenergie. Wanneer aan de atmos­feer zoge­noemde broeikasgas­sen of aërosolen worden toegevoegd, dan zal de stralings­balans veranderen. De atmo­sfeer zal meer infraro­de aard­stra­ling tegenhou­den. Men noemt dit toene­ming van de ‘stralin­gs­force­ring'(F).

Als ijkjaar nemen we 1765 toen er nog bijna geen industrie was. Dat was al duizenden jaren zo ge­weest. De atmosfeer had dus voldoen­de tijd gehad om in even­wicht te komen. Met behulp van de eerder besproken modellen kan men de flux­veran­de­ring aan de tropopauze bereke­nen. Door dat voor ver­schillende concentra­ties te doen krijgt men een serie uitkom­sten. Die kunnen dan aan een functioneel verband worden aange­past, waardoor er gemakkelijker mee valt te reke­nen. In tabel I is een aantal van die relaties gege­ven.

Andere broeikasgassen zoals CFK-11 en CFK-12, enzovoorts, zijn line­air in hun effect, ΔF = kC, waarin de factor k varieert tussen 0,2 en 0,3 als de concentratie C in ppb (delen per miljard) wordt gegeven.

Met deze gegevens konden onderzoekers afbeelding 3 constru­eren, nadat zij met behulp van massa­spectrometrische methoden uit in ijs ingeslo­ten luchtbelletjes hadden gemeten wat de concen­traties vóór 1950 waren. Het is duidelijk dat de stra­lings­force­ring sinds 1775 behoor­lijk is toegenomen.

 

Water

Het belangrijkste broeikasgas is ongetwijfeld waterdamp. Toch wordt het die naam meestal niet gegeven. De hoeveelheid water­damp in de atmos­feer wordt ‘intern geregeld’; de mens heeft daarop geen directe invloed. We kunnen nog steeds niet op enige schaal regen maken. Veranderingen in de hydro­logi­sche cyclus zijn een eventu­eel indirect gevolg van menselijk hande­len, maar kunnen niet antropo­geen genoemd worden. Wél moet die cyclus altijd in de modellen meegenomen worden. Ruwweg draagt water voor zo’n 80 % aan het broeikaseffect bij.

 

 

Koolstofdioxide (CO2)

Na water is CO2 het belangrijkste broeikasgas. Voor zover de mens het broei­kaseffect versterkt, komt dit vooral door dit gas (zie afbeelding 4). Vandaar de huidige onge­rustheid. Het is daarom de moeite waard om de globale koolstofcyclus te bezien (zie afbeelding 5; de hoeveelheden zijn in gigaton koolstof (GtC); 1 gigaton CO2 zou 44/12 maal zo veel zijn).

Voor de mens zijn twee fluxen belangrijk, want wellicht be­nvloedbaar.

Voor de mens zijn twee fluxen belangrijk, want wellicht be­nvloed­baar: het resultaat van verbran­den van fossiele brand­stoffen (5 GtC per jaar) en de CO2 die vrijkomt door het kappen en verbranden of laten verrotten van hout (2 GtC per jaar)

en door sommige indus­triële acti­vitei­ten (cementproduk­tie) . Die activiteiten over de laatste 200 jaar worden verant­woorde­lijk gehouden voor de toename van de CO2-concen­tratie (afbeel­ding 4).

Het duurt ongeveer vier jaar voordat een atmos­ferisch CO2-molecu­le tijdelijk wordt vastge­legd in een plant of in de oceaan. Dit is niet de tijd die het CO2-systeem neemt om na verho­ging van de concentra­tie terug te keren naar het oor­spron­kelijk gehal­te. Deze is iets van 50…200 jaar. Zo lang neemt het voor de extra CO2 om defini­tief vastgelegd te worden in ge­steente. Deze lange tijden zijn belangrijk wanneer men tot verlaging van het CO2-gehalte wil komen. Maatre­gelen daartoe zullen pas merkbaar effect hebben op een termijn van tientallen jaren.

Een redelijke vraag is natuurlijk of al die extra CO2 sinds 1765 is veroorzaakt door de mens. Schat­tin­gen leiden tot een jaar­lijkse emissie in 1995 van 5,5 GtC/a. Naast CO2 van fossie­le brandstof en cementproduktie is er ook nog CO2-toename ten gevolge van ontbossing in de tropen. Deze hoeveel­heid wordt geschat op 1,6 GtC/a. Dat is een getal met een grote fouten­mar­ge (± 0,5 GtC/a). Voorlopig lijkt het vrij­ge­ko­men land hoofd­zake­lijk voor land­bouw te worden ge­bruikt en dan is de tijd waarvoor CO2 wordt vastgelegd (in gewas) te kort om in de CO2-balans te figureren. Maar herbe­bossing in subtro­pische en matige streken legt jaar­lijks naar schatting 0,5 GtC vast.

CO2 is ook een ‘meststof’ voor bomen. Men schat dat zo (met een grote foutenmarge) circa 1,3 GtC per jaar extra wordt vast­gelegd.

Over de uitwisseling van het oppervlaktewater van de oceanen met de diepere lagen is heel weinig bekend, maar als we het jaarlijkse budget van de antropo­gene CO2 opmaken, dan ziet dat er ongeveer uit zoals weergegeven in tabel II. Het lijkt er een beetje op dat men als een ‘missing sink’ de definitieve opslag in de diepe oceaan heeft genomen. Erg veel ander be­wijsmateriaal is er niet. Maar een feit is dat het CO2-gehalte van de atmosfeer sinds 1960 jaarlijks met zo’n 1,6 ppm is toegeno­men tot de huidige waarde van 358 ppm.

 

Methaan

Methaan (aardgas, CH4), het na CO2 meest bijdragende broei­kasgas, komt momen­teel met een gehalte van 1,72 ppm in onze atmosfeer voor. De concen­tratie neemt met 0,8 % per jaar toe. Waarom zouden we ons over zo weinig CH4 druk maken? De Green­house Warming Potential (GWP) van methaan, de effec­ti­vi­teit voor stra­lingsfor­cering, is door zijn sterke­re infra­roodab­sorp­tie ruw­weg 60 keer zo groot per gram als die van het broeikas­gas CO2. Daar staat tegen­over dat CH4 door hy­droxyl- (OH-)radicalen binnen negen jaar al tot de helft wordt afge­bro­ken tot H2O en zwak-IR-actieve produkten. Het effect is daar­door kortston­dig verge­leken met dat van CO2, maar als men een systeem be­schouwt waar elk jaar een tiental ppt (parti­cles per trillion, 1012) bij­komt, dan draagt ondanks zijn lage concen­tra­tie methaan dus toch aan­zienlijk bij aan de stra­lings­focering en dus aan het broeikas­effect.

Wat zijn de bronnen van me­thaan in de atmosfeer? In eerste instantie moeras­sen (bij ons heette methaan vroeger niet ‘aardgas’, maar ‘moerasgas’). Ook schijnt er een vergelijk­baar proces op te treden in natte rijstvelden (alhoe­wel dit door Indiase wetenschappers wordt bestre­den). Darmgisting bij dieren, produktie door termieten en verliezen bij winning van olie en aardgas zijn andere bronnen. Dan zijn er nog ver­schei­de­ne kleinere zoals steenkoolmij­nen, aange­plempte gronden (vaak afval) en de oceanen. Ten slotte nog de lekkage van pijplij­nen voor aardgas. Met name de Siberische vertonen veel lekken.

Er is nog een verbor­gen moge­lijkheid. Methaan vormt zogenoemde hydra­ten met water, die bij lagere temperatuur en/of onder hogere druk stabiel zijn. Er is de veronder­stel­ling geuit dat de grond van de toendra veel van deze hydra­ten bevat. Een tempe­ratuurver­hoging van de Aarde zou deze hydraten kunnen doen ontleden, waardoor veel extra methaan in de atmo­sfeer vrij zou komen. Een dergelijke ‘voorraad’ methaan wordt ook wel veronder­steld zich in de diepe oceaan te bevinden. Ver­hoogde temperaturen zouden ook die hoeveel­heid kunnen vrijma­ken. Hoeveel dat zou zijn is pure speculatie, we laten het daarom bij deze opmerking.

 

Andere broeikasgassen

Naast CO2 en CH4 zijn er nog enkele andere broeikasgassen, zoals N2O (lach­gas) en CFK en in het algemeen halo-alkanen. N2O komt vooral vrij uit occanen en (sterk variërend) uit zoet-waterreservoirs. Het is nog niet duide­lijk welke proces­sen tot N2O-vorming leiden. Vooral bodems lijken N2O vrij te maken, door nitrificatie onder anaërobe condities. Verder geven explo­siemoto­ren en de chemische industrie N2O af en komt het vrij bij verbranden van biomassa. Het gehalte aan N2O is nu 0,310 ppm, dat is 8 % hoger dan in het pre-indus­triële tijd­perk; de toename is circa 0,2…0,3 % per jaar, kennelijk een heel geringe antro­po­gene bijdrage.

Daarnaast hebben we nog de CFK’s, de volledig gehaloge­neerde koolwa­terstof­fen. Eenmaal in de stratosfeer dragen ze bij aan het ontstaan van het ozongat. In de tropo­sfeer dragen ze bij aan het broeikaseffect. Ze zijn zeer stabiel en zullen hun bijdrage lang leveren. Hun Global Warming Potenti­al is zéér hoog, tussen 4000 en 8000. Dat wil zeggen bij gelijke hoeveel­heid zijn ze 4000 tot 8000 keer zo effec­tief voor opwarmen als CO2! Gelukkig zijn de concentra­ties niet zo hoog, ze liggen rond de 100 ppt en alles te zamen circa 2000 ppt. Zij dragen toch bij tot het (extra) broeikas­effect. Gelukkig zijn hun concentraties in de atmo­sfeer nu gestabili­seerd of licht aan het dalen. Ge­vreesd moet echter worden dat de CFK’s door HFK’s (waterstof-fluorkoolwaterstoffen) vervangen zullen wor­den. Die laten ozon ongemoeid, maar zijn een broeikasgas met een aan CFK’s gelij­ke GWP. Naast N2O en de CFK’s heeft men dan nog O3 (ozon) in de tropo­s­feer. Onge­veer 10 % van het O3 in de strato­s­feer wordt naar de tropos­feer gevoerd, maar het komt ook vrij bij de oxidatie van methaan. Ozon in de troposfeer draagt bij aan het broeikasef­fect, in de stratosfeer vangt het de directe zonne­straling in. Meer ozon dáár betekent afkoe­ling. In de laatste jaren is boven Antarc­ti­ca een vermindering van het ozongehalte geconsta­teerd, in mindere mate evenzo boven Arcti­ca. Bij de tropen lijkt het onveranderd te zijn. Er is van het O3 netto een klein verwar­mend effect te verwach­ten.

 

Aërosolen

Aërosolen worden veroorzaakt door stofstor­men, door zeezout, maar ook door het onder invloed van zonlicht en water samen­klon­teren van zwaveldi­oxidegas tot kleine druppeltjes zwavel­zuur (zure regen). Ongeveer 10 % van het stof en vrijwel alle zure regen is van antropo­gene oorsprong, en dat geldt waar­schijn­lijk ook voor het verbranden van biomassa, al is dat niet echt zeker. De verblijftijd van aërosolen in de tropo­sfeer is van de orde van enige dagen tot enige weken. Voor een accumu­lerend effect behoeft dus niet te worden ge­vreesd. Het vóórkomen van aëroso­len is erg ongelijk, omdat zij vaak van lokale oorsprong zijn en betrekkelijk snel weer neerslaan. Zo wordt bijvoorbeeld 80 % van de massa van natuurlijke en ant­ro­po­gene aërosolen op het noorde­lijke halfrond gevonden.

Sulfaat-aërosolen vergroten vooral de totale weerkaatsing van de Aarde en leiden tot afkoeling. Roet­deel­tjes echter zijn meer als een broeikasgas. Het totale directe gemid­delde effect van aërosolen op de stra­lingsforcering is niet onbelangrijk en zal onder voorbehoud waar­schijn­lijk tot enige afkoeling lei­den.

 

De temperatuur van de Aarde

De stralings­force­ring is sinds 1765 behoorlijk toegenomen. Maar is het daardoor sindsdien ook warmer op Aarde gewor­den? Redelijk betrouwbare temperatuurreeksen zijn beschik­baar, maar zij zijn althans voor de vroegste decennia (1860-1890) open voor dis­cus­sie. Zijn de thermome­ters goed genoeg geweest, was het meetnet dicht genoeg, enzovoorts.

Het wordt alle­maal iets be­trouw­baarder wanneer we alleen naar de verschil­len tussen de jaren kijken; dan vermijden we wel­licht de syste­mati­sche fou­ten. Afbeelding 6 laat het verloop van deze verschil­len ten opzichte van het gemid­delde van 1920-1940 zien. Over de gehele 134 jaar zou men tot een opwarming van 0,5 °C kunnen besluiten. De afgelopen 130 jaar lag die tempe­ra­tuurverhoging binnen de natuurlijke schommeling van het kli­maatsysteem, maar dat zegt niets over het gedrag in de vol­gende 100 jaar. De statis­tiek van het tempe­ratuurver­loop is over langere tijd niet goed bekend en zal dat voor­lopig ook niet worden.

Maar wellicht bieden recente, heel uitvoerige klimaat­simula­tiepro­gram­ma’s wél soelaas. Zij nemen vooral ook het gedrag van de oceanen en hun koppe­ling via het klimaat aan de land­mas­sa’s mee. We kunnen die programma’s bij verschil­lende begin­voorwaarden laten starten. Elke keer krij­gen we een verloop in de tijd te zien van aller­lei grootheden, waaron­der de tempera­tuur. Door dat een groot aantal keren voor ver­schil­lende beginwaar­den te herhalen, krijgen we een soort ruis, een soort statistiek.

Als we voldoende statistiek hebben over de huidige situatie, laten we het programma weer lopen, maar vergroten we heel lang­zaam bijvoor­beeld de CO2-concentratie tot men een verdub­be­ling ten opzichte van de eerdere situatie heeft bereikt. Ook dat herhalen we een aantal keren en we bekijken of de bereken­de waar­den voor de inmiddels verlopen jaren aanslui­ten bij de geme­ten waarden en of latere boven de ‘synthetische’ ruis uitste­ken. Het resul­taat voor twee compu­terberekenin­gen zien we in afbeelding 7. De huidige temperatuur is aange­geven. Men zou kunnen conclu­de­ren, dat het opwarmend effect van de broei­kas­gas­sen nèt waarneem­baar is.

Er zijn ook andere, meer experimentele indicatoren denk­baar: gede­saggre­geerde gege­vens, vooral in conti­nenten en oceanen ge­schei­den. Ze zijn samen­gevat in afbeelding 8. De stratosfeer lijkt tussen 1979 en 1994 zo’n 0,6 °C kouder te zijn gewor­den. De troposfeer werd tussen 1958 en 1994 zo’n 0,3 °C war­mer, maar toont geen veran­dering over de laatste 15 jaar, terwijl de tempera­tuur op het aardop­per­vlak zo’n 0,3…0,6 °C hoger schijnt te zijn gewor­den.

De gemiddelde sneeuwbe­dekking op het Noor­delijk Halfrond lijkt 10 % te zijn afgenomen over de laatste 21 jaar en de gletsj­ers geven in het algemeen een teruggang te zien. Het opper­vlakte­water in de oceaan volgt de aardtem­pera­tuur: een stij­ging van 0,3 °C tot 0,6 °C sinds het eind van de vorige eeuw. Opmer­kelijk is dat over de laatste 40 jaar de nacht­temperatu­ren sneller zijn gestegen dan die van de dag, iets wat ook uit de compu­ter­modellen naar voren komt. Ten slot­te is het zeeijs op het Noordelijk Halfrond wat verminderd over de laatste 20 jaar en sinds 1990 óók op het Zuidelijk Halfrond.

 

Naast de temperatuur zijn er ook hydrologische verschijn­selen waar­neembaar. Ze zijn in afbeelding 9 aangegeven: de hoge bewol­king is sinds 1951 toegenomen, maar blijft sinds 1981 gelijk. De middenniveau-bewolking op het Noordelijk Halfrond is ook toegenomen, evenals de hogere convectieve wolken. De mooi-weercumulus is echter afgenomen. Min of meer hetzelfde geldt voor het Zuidelijk Halfrond. De subtropen zijn droger gewor­den en de verdamping van water in de VS en in het terri­torium van de voormalige Sovjetunie is afgeno­men. Zo is ook de grond in dat gebied natter geworden. Boven de oceaan vindt men overi­gens meer waterdamp dan vroeger in de lucht. Al deze ver­schijn­se­len kunnen in verband gebracht worden met modelle­ringen ­van het broei­kas­ef­fect, maar zeker­heid geven ze niet.

Als er al een verandering komt is het steeds de vraag of menselijk handelen daarvoor verantwoor­delijk is. Van bijzon­der belang is het mogelijke stijgen van de zeespiegel. Het bepalen van de hoogte daarvan is aan verschil­lende moeilijk­heden onderhevig. Men meet de zeespiegel ten opzichte van het land, maar wat als de bodem daalt? Meten we de zee- (of ijs-)hoog­te met een satel­liet, dan moet men de baan van die satel­liet tot op de centime­ter nauw­keurig kennen. Aan beide tech­nieken is veel aan­dacht besteed, de consen­sus lijkt te zijn dat een stijging van 2…7 c­m over de laatste honderd jaar heeft plaatsge­von­den. Deze wordt vooral veroor­zaakt door de warmte­uitzetting. Door de lang­zame uitwisse­ling van diep en ondiep oceaanwater kan verwacht worden dat de ‘rijzing’ nog vele jaren door zal gaan.

De Intergovernmental Panel on Climate Change (IPCC) van de VN bestudeert intensief alle gegevens over het broeikaseffect. Het panel durft in stelligheid niet verder te gaan dan dat ‘The balance of evidence suggests a discernible human influen­ce on global climate‘. Voorzichtiger kun je het niet zeggen: niet eviden­ce, maar the balance of eviden­ce. Niet shows, maar su­ggests. En: discernible human influence in plaats van per­cep­ta­ble, of zelfs maar gewoon human influen­ce. Nee je moet erg goed kijken voor je het ziet, het gaat niet vanzelf: dis­cerni­ble. En dan influ­ence on global climate: Er wordt niet eens gepoogd aan te geven wàt voor invloed. Wordt ’t kouder, war­mer, natter, droger? Het IPCC zegt het niet, maar erkent wel de invloed van de mens. Het is moeilijk om met die uit­spraak van mening te verschillen.

 

Conclusies

Klimatologen adviseren regeringen over de moge­lijke gevolgen van het (extra-) broeikaseffect. Moeten zij adviseren alle industriële CO2-produktie te verbieden, haar te belasten of de zaak op zijn beloop laten? Ik benijd de klimatologen niet. Zij zouden toch eigen­lijk een antwoord moeten kunnen verzin­nen. Maar dat lijkt niet zo te zijn. Het is eerder: ‘Er moet nog meer onder­zoek gebeu­ren’.

Ik ben zelf geen klimatoloog, ik ben spectroscopist en weet als zodanig iets van licht en materie af. Maar ik heb dit verhaal na enige studie geschre­ven en voel mij als een onbe­trokken intermediair. Dan vind ik het passend als ik voor de lezer opschrijf wat ik er van denk. En wel in drie categorie­n: wat weten we (vrijwel) zeker, wat vermoeden we en wat kunnen we voorlopig alleen maar geloven?

De toename van de CO2– en CH4-concentraties zal voorlopig nog wel door­gaan, zeker wat het effect op de temperatuur be­treft. Dat heeft een ‘uitlooptijd’ van ten minste honderd jaar. Dat bete­kent dat we wel zeker weten dat het warmer wordt in de volgende honderd jaar. Gemiddeld 2…3 °C en méér aan de polen dan aan de evenaar.

Dat betekent ook dat – puur door thermi­sche expansie van het oppervlak­tewater – de zee­spiegel ongeveer twintig centi­me­ter zal stijgen, mis­schien iets meer. Ik vermoed dat de ‘verwoes­tij­ning’ van het subtropisch gebied verder zal worden bevor­derd en dat in het alge­meen soorten landbouw die het al moei­lijk hebben verder in de verdrukking komen, behalve als ze door de opwar­ming juist minder marginaal worden. Toch weer wijn uit Nederland? Gegeven onze geografische positie zal de druk op de subtropen wellicht leiden tot een hogere druk van politieke of economi­sche vluch­te­lingen. Ik vermoed ook dat Nederland de veranderingen bij zal kunnen houden, het is een verstandig land dat, als het getij verloopt, de bakens tijdig verzet.

Ik geloof niet dat we binnen afzienbare tijd ‘Amersfoort aan Zee’ zullen mee­maken. Wel geloof ik, gegeven de onzeker­heid van de berekeningen, dat de zogenaamde Small Island States zich terecht zorgen maken. Het gaat toch niet aan de bewoners van deze eilanden in grote moeilijkheden te brengen door onze emissies.

Ik geloof niet dat voldoen­de bewijs beschik­baar is dat grote stormen zullen plaatsvinden. Ik geloof niet dat in Neder­land een subtro­pisch klimaat zal ontstaan.

Wat geloof ik dan wel? Ik vermoed, met aan zekerheid grenzende waarschijn­lijkheid, dat het langdurig effect, typerend voor het broeikaseffect van CO2, juist is. En dát betekent dat regeren in dit geval echt vooruit­zien moet zijn. Maatrege­len die we nu nemen zullen hun effect over 10…20 jaar heb­ben, dus is het hoog tijd om ermee te beginnen.

(EINDE TEKST)

 

(QUOTES IN KADERS)

Als er al een klimaatverandering komt, is het steeds de vraag of menselijk handelen daarvoor verantwoor­delijk is

 

Het gaat toch niet aan de bewoners van eilanden in grote moeilijkheden te brengen door onze emissies

(BIJSCHRIFTEN)

(BIJ TEKSTKADER)

Afb. 1 UV- en IR-stralingsfluxen door de atmosfeer.

 

(BIJ TEKSTKADER)

Afb. 2 Netto UV-, IR- en convectiefluxen.

 

(BIJ DE EERSTE TEKSTCURSIVERING)

Afb. 2a Absorptie bij toenemende concentraties. Het gas blijft in de flanken absorberen. Het midden van de absorptieband gaat een steeds kleinere rol spelen.

 

(BIJ DE TUSSENKOP WATER)

Afb. 3 Stralingsforcering van verscheidene broeikasgassen vanaf 1765.

 

(BIJ DE TUSSENKOP KOOLSTOFDIOXIDE)

Afb. 4 Toename van de concentratie van atmosferische CO2 in de laatste 250 jaar afgeleid uit metingen aan in Antarctisch ijs gevangen luchtbelletjes en uit metingen op Hawaii sinds begin jaren vijftig.

 

 

(BIJ DE TUSSENKOP KOOLSTOFDIOXIDE)

Afb. 5 De koolstofreservoirs en -stromen in giga-metrieke ton (109). De onderstreepte getallen hebben betrekking op CO2-accumulatie ten gevolge van menselijke activiteit.

 

(BIJ DE TUSSENKOP DE TEMPERATUUR VAN DE AARDE)

Afb. 6 De eenjarige voortschrijdende gemiddelde afwijking van de gemiddelde temperatuur in de periode 1925-1935.

 

(BIJ DE TUSSENKOP DE TEMPERATUUR VAN DE AARDE)

Afb. 7 Huidige afwijking van de gemiddelde temperatuur in de ‘synthetische’ ruis van twee broeikasmodelberekeningen. (TOE­VOEGEN) MPI CO2 anom is de verhoging van de gemiddelde we­reldwijde temperatuur bij toename van de CO2-concentratie vol­gens het klimaatmodel van het Duitse Max Planck Instituut. Hadley CO2 anom : hetzelfde, maar dan berekend met het kli­maatmodel van het Britse Hadley Institute. MPI aer anom en Hadley aer anom : in beide klimaatmodellen wordt nu ook uitge­gaan van hogere concentratie aërosolen. Die zorgen voor afkoe­ling, c.q. gerin­gere opwarming van CO2 alléén zou doen. De grafiek in het horizontale vlak laat zien hoe het klimaat zich volgens beide modellen zonder toename van CO2 en aërosolen zou g­edragen.

 

(BIJ DE TUSSENKOP DE TEMPERATUUR VAN DE AARDE)

Afb. 8 Temperatuurindicaties voor het broeikaseffect.

 

(BIJ DE TUSSENKOP DE TEMPERATUUR VAN DE AARDE)

Afb. 9 Hydrologische indicaties voor het broeikaseffect.

 

 

 

(KADER BIJ FIGUUR 1 EN 2 EN BIJ TUSSENKOP MODELLEN)

De Aarde ontvangt en weerkaatst kortgolvig (UV) licht en zendt licht met een lange golflengte (IR) uit. Aan de hand van afbeelding 1 be­schrijven we hier de weg die kortgol­vig (ultra­vio­let en zicht­baar) licht aflegt dat op de Aarde valt. Eerst moet het licht de stratosfeer passeren. De aldaar (nog) aanwe­zige ozon fil­tert het UV-deel weg en verder wordt het licht voor- en ach­terwaarts verstrooid (blauw licht meer dan rood licht, daarom is de lucht hier beneden blauw, boven de atmo­sfeer is de hemel zwart). Doordat de druk er laag is, neemt de lichtin­tensi­teit naar beneden toe maar langzaam af. Nadat de tropo­pauze is gepas­seerd wordt de dicht­heid van de dampkring en daardoor de ver­strooiing van het licht groter. Er treedt enige absorptie op door water en troposfe­risch ozon. Het licht wordt ver­strooid, geabsor­beerd en gere­flec­teerd door aller­lei soorten van wolken en het wordt verstrooid en geabsorbeerd door atmo­sferi­sche stof­deeltjes. Van de 342 Wm-2 die binnen­kwam, bereikt gemid­deld 183 Wm-2 het aardopper­vlak, waarvan 23 Wm-2 direct weer wordt weerkaatst. Netto ont­vangt het aard­op­per­vlak dus 160 Wm-2. We volgen deze kortgol­vige flux vanaf de Aarde terug de ruimte in. Aller­eerst wordt hij vergroot door het terug­ver­strooi­de licht van stofdeeltjes en moleculen in de tropos­feer en door het van de wolken de ruimte in weer­kaatste licht. Alles te za­men treedt aan de buitenzijde van de atmos­feer 106 Wm-2 uit. Dat is 31 % van de inkomen­de 342 Wm-2 ofwel de ‘albedo’ van de totale Aarde, de weerkaatsing, is 0,31.

Alle objecten van een eindige temperatuur stralen licht uit. Ook de Aarde en de omringende atmos­feer. Bij de tempe­ra­tuur die beide hebben is dat infra­rode straling. Zoals ge­llus­treerd in afbeelding 1 volgen we de infra­rode flux, maar nu vanaf het aardop­pervlak. Gemid­deld is de IR-flux daar 395 Wm-2 (naar boven). Door absorptie in waterdamp, wolken, CO2, CH4 en andere broeikas­gassen neemt deze flux naar boven toe af tot ongeveer 240 Wm-2 bij de tropopauze en treedt er uiteinde­lijk 236 Wm-2 uit. Daarmee is de Aarde in stralings­evenwicht, want deze flux, vermeer­derd met de gereflec­teer­de kortgol­vige flux (106 Wm-2), is exact gelijk aan de 342 Wm-2 die op het aard­sys­teem viel.

Het feit van de stralingsbalans zou een mogelijkheid kunnen scheppen het broeikasef­fect direct te meten. Als de Aarde opwarmt, of afkoelt, is de balans uit even­wicht. Nauwkeu­rige infrarood- en ultraviolet-metingen met satellieten zouden deze onbalans moeten kunnen constateren.

Er is ook een benedenwaartse infrarood flux, die echter niet van buiten de dampkring komt maar in de stratosfeer ontstaat, sterk toeneemt in de tropos­feer en uiteindelijk 335 Wm-2 op het aardoppervlak deponeert. Deze is het gevolg van de in alle richtingen uitgezon­den straling van eerder met lichtener­gie opgeladen broeikasgassen en wolken. Daarnaast, zagen we, valt er 160 Wm-2 kortgolvige straling op het aardopper­vlak. Samen met de langgol­vige is dat dus 495 Wm-2.

Door het aardop­per­vlak wordt 395 Wm-2 uitge­zon­den. Er is dus een overschot van 100 Wm-2 dat, wil het aardopper­vlak gemiddeld een constan­te temperatuur hebben, op een andere wijze dan door straling moet worden afgevoerd. In tegenstelling tot de bui­ten­zijde van de atmosfeer is de ‘binnen­zijde’, het aardop­pervlak, niet in stralings­evenwicht. Het ‘overschot’ aan de aardzijde moet naar de atmos­feer worden afgevoerd. Dit trans­port heeft twee compo­nenten: het latente en het sensi­bele trans­port. Het eerste wordt veroor­zaakt door het verdampen van water en het weer conden­seren in een hogere lucht­laag. Deze flux bedraagt 85 Wm-2, waarmee per jaar gemid­deld 970 mm water wordt gecircu­leerd. De resterende 15 Wm-2 wordt als sensibele flux door geleiding en turbu­lente bewegingen in de tropos­feer verzorgd.

De ver­schillen­de netto fluxen zijn weergegeven in afbeelding 2. Bedacht moet daarbij worden dat over wereldwijde gemid­delden is gesproken.

 

(TABEL BOVEN TUSSENKOP WATER)

Tabel I

 

Stralingsforcering (ΔF in Wm-2) voor gassen

 

 

Gas  Functie   Opmerkingen

CO2  ΔF = 6,3 ln(C/C0)   met C0 = 279 ppm

CH4  ΔF = 0,036 (ÖM – ÖM0)*   met M0 = 790 ppb

N2O  ΔF = 0,14 (ÖN – ÖN0)*    met N0 = 0,027 ppb

*met correctie termen voor overlappende absorpties van CH4 en N2O (C = koolstof, M = methaan, N = stikstof)

 

(TABEL BOVEN TUSSENKOP METHAAN)

Tabel II

Jaarlijks Budget

 

EMISSIES                           OPSLAG

 

Brandstof en/of cement   5,5 ± 0,5 Atmosfeer      3,3 ± 0,5 GtC/jr

Hergroei       0,5 ± 0,5

Tropisch Bos       1,6 ± 1,0 Bemesting      1,3 ± 1,5

          Oceanen   2,0 ± 0,8

Totaal               7,1 ± 1,1      7,1 ± 1,3