Tag archieven: Siemens

Zweeftrein over HSL-Zuid (nummer 4, 1 maart 2002)

 

 

 

Hier de PDF van het artikel: page from INGR200204

 

STAAN IN TRANSRAPID GEEN ENKEL PROBLEEM

Zweven over HSL Zuid

HET TRACÉ VAN DE HOGESNELHEIDSLIJN-ZUID WORDT ZO GEBOUWD DAT ER IN DE TOEKOMST EEN MAGNEETZWEEFTREIN OVER KAN RIJDEN. DIT MELDDE ING. MARTIN VAN PERNIS, DIRECTEUR VAN HET CONSORTIUM TRANSRAPID NEDERLAND, TIJDENS EEN PROEFRIT VAN DE MAGNEETZWEEFTREIN IN HET DUITSE LATHEN. EEN TEST, WAAR JE RUSTIG BIJ KON BLIJVEN STAAN.

tekst erwin van den brink foto siemens

siemenssw050108-2-300dpi

Animatie van de zweeftrein in Shanghai.

Binnen 5 km op 300 km/h. Een

TGV of ICE heeft daar 28 km voor nodig. Een TGV of ICE zit dan aan zijn top, een Transrapid trekt nog even door naar 500 km/h. De TR-8, het eerste productievoertuig dat Transrapid heeft gebouwd, ondergaat momenteel tests voor de eerste lijndienst, namelijk tussen de luchthaven en het centrum van Sjanghai, die in 2003 operationeel moet zijn.

Met een licht schokje verheft de trein zich. Dan zet de TR-8 de vaart erin. Binnen luttele seconden bewegen we met een snelheid van 100 km/h. Doodstil. De proefbaan in het Duit- se Lathen, even over de Groningse grens, heeft aan beide uiteinden een lus om te keren. Als we de eerste lus ingaan, accelereert de trein naar 270 km/h. Zodra we de wissel naar het rechte stuk op de terugweg passeren haalt de TR-8 400 km/h. Zitten is niet geboden. Je kunt rustig blijven staan. Tot 300 km/h is het buitengewoon stil in de cabine. Met het door- trekken naar 400-420 km/h ontstaat een laagfrequent geluid van het denderen van de lucht langs de buitenwand, die kennelijk tur- bulent wordt. Toch is het geluid lang niet zo storend als de herrie die passagiers in turbo- propvliegtuigen hebben te verduren, waarvan de Transrapid met zijn kruissnelheid van 500 km/h de gedoodverfde concurrent is.

MEET- EN REGELTECHNIEK

Twee zaken maken deze test wat onduide- lijk. Deze proefrit is nodig om de meet- en regelprogrammatuur helemaal foutloos te maken. De trein zwieberde dan ook een beetje. Ook reden we 400 km/h en nog niet 500 km/h. De luchtweerstand neemt expo- nentieel toe met de snelheid. We zouden dus nog eens een volledig afgeregeld productie- exemplaar bij 500 km/h willen beleven.

De meet- en regeltechniek is het grote geheim dat Siemens heeft beschermd met octrooien. Aan de hardware is inmiddels niets geheimzinnig meer. Het idee om treinen mag- netisch te laten zweven en ze voort te bewegen met een lineaire motor die in de baan zit, dateert van 1934. Ing. Martin van Pernis, directeur van het consortium Transrapid Nederland: ‘Het is niet de elektrotechniek die voor de doorbraak van de trein heeft gezorgd, maar de komst van de informatietechnologie begin jaren negentig, die de software moge- lijk maakte om de meet- en regelelektronica te besturen.’ De regelkring heeft een loop van een nanoseconde en voert dus een miljoen metingen en berekeningen per seconde uit. Van Pernis zegt ook nog even dat de bouwers van de HSL Zuid het tracé, inclusief tunnels, geschikt maken voor een levitatietrein.

De acceleratie is zo gekozen dat mensen inderdaad kunnen blijven staan, omdat anders de in- en uitstaptijden (fasten your seatbelts en stow your luggage) enorm zouden toenemen, wat de tijdwinst door de accelera- tie teniet doet. De versnelling is die van een personenauto. Het verschil is dat de versnel- ling aanhoudt tot de snelheid van 500 km/h is bereikt. Een grotere acceleratie is mogelijk, bijna onbegrensd. Voor vrachttreinen zou dat kunnen – er is

namelijk geen
bestuurder, die
zit in het contro-
lecentrum. In
verticale positie
zou het systeem
kunnen dienen
als booster, aan-
jager, van zware
raketten, een
soort elektromagnetisch ruimtekanon.

Volgens Siemens legt de zweeftrein de afstand Amsterdam-Groningen met tussen- stops binnen het uur af (54 minuten). De bus van Lathen naar Utrecht doet er terug weer een tergende drie uur over.

 

 

 

 

 

 

 

 

 

De warme fabriek: herindustrialisatie van onze binnensteden

 

 

warmefabriek2000-12_Manufacturing_on_demand

warmefabriek

 

Siemens werkt aan industriële schaalverkleining

De warme fabriek

Industriële schaalverkleining door nieuwe productietechnieken en verdere informatisering brengt de fabricage in de toekomst terug naar de stad. Zoals er nu dankzij desktop publishing al boeken worden gedrukt in een oplage van een exemplaar, zo is straks voor bepaalde goederen serieproductie in partijen van één mogelijk. Manufacturing on demand: de meest extreme vorm van just in time en lean production samen. Ook in dit tijdperk wil Siemens wereldleider in machinebouw blijven.

Tijdens het Industry Press Forum communiceert Siemens elk jaar twee dagen lang via een paar hon- derd uitgenodigde vertegenwoordigers van vooral technische vakbladen met zijn wereldwijde klantenbasis, de maak- en procesindustrie, de energieconversie-in- dustrie en de logistieke dienstverlening. Dit jaar gebeurde dat in Chicago. Die klan- ten hebben veel kapitaal geïnvesteerd in machineparken die vaak door Siemens zijn gebouwd. Die willen natuurlijk horen hoe ze hun installaties zo lang mogelijk compatibel houden met oprukkende nieuwe techniek. En dus is ‘de fabriek van de toekomst voor 90 %’ gebaseerd op de fa- briek van vandaag. Siemens’ concept voor industriële automatisering (Totally Integrated Automation) beoogt bijvoorbeeld automatisering volledig te integreren in bestaande, conventionele productietechniek. Meestal is daarbij een grootschalige productielijnen uiteindelijk een assemblagelijn gebruikelijk. Vanwege de afmetin- gen van de fabriek werden ze buiten stad of dorp gebouwd, waardoor een scheiding ontstond tussen wonen en werken.

Maar volgens Gerhard Schulmeyer, president-directeur van de Siemens Corporation in de VS (70 000 werknemers), ‘komt productie in het informatietijd- perk terug naar de stad’. Wat hij daarmee bedoelde, werd duidelijk uit het verhaal dat dr. Thomas Grandke, de hoogste baas van Siemens Corporate Research in de VS, vervolgens hield. Zoals de brood- fabriek uit de jaren zestig terrein heeft prijsgegeven aan de warme bakker, zo ontstaan er in de niet al te verre toekomst ‘warme fabrieken’. In feite wordt op den duur door deze schaalverkleining ten gevolge van nieuwe productietechnieken de fabricage van dingen in de bebouwde omgeving grotendeels onzichtbaar.

Informatie-oceaan

Grandke spreekt in dit verband over fluid software en metered manufacturing. U maakt uw eigen spullen en u wordt afgerekend in ‘gemeten fabricage’. Programmatuur wordt volgens hem een utility, een openbare nutsvoorziening die zoals stroom in kilowatturen en wa- ter in kubieke meters in bulkhoeveelhe- den wordt ‘gemeten’ en afgerekend. In- ternet wordt een ‘informatie-oceaan’. On line is nu nog bijzonder en noemens- waardig, maar straks werkt iedereen standaard on line. De aanduiding zal uit ons bewustzijn en als zegswijze in het taalgebruik verdwijnen.
Informatie als nutsvoorziening is logisch aangezien behalve energie voor het ma- ken van dingen juist steeds meer informatie nodig is. Stel: u woont in een oud huis waarvan de deuren karakteristieke ‘voor- oorlogse’ deurkrukken hebben. Er breekt zo’n kruk af. Nu gaat u naar de goed gesorteerde ijzerhandel en die heeft iets nostalgisch, maar dat lijkt er slechts in de verste verte op. In de toekomst tast een apparaat de vormen van de antieke deurkruk drie- dimensionaal af of u plukt hem van een web-catalogus. U voorziet deze data van productspecificaties en fabricage-instructies voor de, laten we zeggen, ‘productie-automatiek’, de ‘fabromaat’, die u toevallig aantreft tussen de afhaalchinees en Home Pizza een paar straten verderop. Patricia Moody en Richard Morley voorspellen in hun boek The Technology Machine. How manufacturing will work in the year 2020 eveneens de terugkeer van de fabricage naar de stad. Als voorbeeld noemen zij een printer die in plaats van met een ink-jet met een straaltje vloeibaar staal ‘schrijft’, maar dan in drie dimensies. Die printer is in staat om op bestelling een metalen voorwerp te maken. De daarvoor gebruikte hoeveelheid software is bulk afgerekend. Samen met de software die allerlei huishoudelijke apparaten verbrui- ken. Want zoals uw pc nu on line ongemerkt de laatste virusscanners van Internet afhaalt, zo tappen straks intelligente, huishoudelijke apparaten behalve stroom ook data af om zichzelf bij de tijd te houden – via het stroomnet zelf of via draadloze datanetwerken met behulp van Wireless Application Protocols (WAP’s).

Stofzuigrobot

Infotizing noemt Grandke dat, distributed processing. De ‘intelligentie’ waar- mee de stofzuigrobot uw huis ‘doet’, hoeft niet in het apparaat zelf te zitten, maar bevindt zich ergens op Internet. Zo kent de robot de indeling van uw huis, weet hij waar de meubels staan, waar de tapijten  liggen  en de kat niet moet plagen .  Apparaten worden volgens Grandke steeds slimmer: ze onderhouden zelf hun eigen programmatuur. ‘De concepten van fluid software en metered manufacturing kenden wij twaalf maanden geleden nog niet.’ Met ‘wij’ doelt hij behalve op Siemens op de universiteiten van Berkeley en Princeton en de National Science Foundation, waarmee Siemens in dit verband nauw samenwerkt.
 De belangrijkste drijvende krachten zijn, aldus Grandke, nog steeds de snelle toename van rekenkracht en distributed processing – het besturen van apparaten met behulp van netware. Daarnaast bewaken en onderhouden de slimme apparaten zichzelf. Ze zijn ‘intelligent’ in die zin dat ze zelf bepalen welke software-updates zij van het net halen. Als u lange afstanden reist, zet uw horloge zichzelf gelijk op de lokale tijd.
 De derde drijvende kracht is, volgens Grandke, de merging of media: het onderscheid tussen televisiekabel en het telefoonnet voor spraak en data verdwijnt. Telefoneren via Internet en het net opgaan via gsm zijn reeds mogelijk. In de VS zitten al FM-radiostations op Internet. Televisie-uitzendingen, real time of als te downloaden bestanden, verdrin- gen binnen afzienbare tijd de officiële zendgemachtigden via ether en kabel. Uitgevers van gedrukte media kunnen zich via hun website gaan gedragen als audio-visuele media: zo publiceert het tijdschrift Wired op zijn site interviews als MP3-geluidsbestanden (zie pag. 38). De vierde drijvende kracht is beeldtechniek; misschien is verbeeldings- of uitbeeldtechnologie een betere term. Grandke: ‘We weten dat het menselijke brein visueel veel complexere informatie kan verwerken dan in tekst.’ Als vijfde drijvende kracht noemt hij siliciumcarbiet (SiC) in plaats van silicium als halfgeleidermateriaal in vermogenselektronica. Hiermee zijn veel hogere voltages en werktemperaturen mogelijk. Gentechnologie is de zesde stuwende kracht.

Codetaal

‘Voor de werkomgeving betekenen deze ontwikkelingen bijvoorbeeld dat je voor het programmeren en instrueren van ap- paraten geen codetaal hoeft te beheersen. Coderegels schrijven is ingewikkeld, tijdrovend en foutgevoelig. Straks laat je een apparaat een bepaalde repetitieve handeling eenmaal extern bestuurd uit- voeren en daarmee is dan de programmering voltooid.’ Programming Automation by Demonstration (PAD) heet dat bij Siemens: programmeren is straks wei- nig meer dan (het apparaat) de gewenste handeling voordoen of laten voordoen. In de infotized factory hoeft de storings- monteur geen controlepaneel af te lezen, maar draagt hij een pak en helmdie hem, al naar gelang waar hij zich bevindt, in- formatie geeft over de installatie-onder- delen waar hij bij staat. Al die onderdelen hebben namelijk intelligente sensoren die in verbinding staan met het pak van de monteur. In huis kunnen zulke intelligente sensoren iemand van de trap zien vallen en herkennen hulpgeroep te mid- den van andere huiselijke geluiden en kunnen ondersteuning bieden bij thuis- zorg voor het groeiend aantal ouderen. Ze onderscheiden een bewoner van een inbreker, ook als de bewoner de balkondeur forceert om binnen te komen, om- dat hij de sleutel is vergeten.
Of er nog vragen waren, wil Grandke weten als hij zijn presentatie heeft beëindigd. Het blijft stil, muisstil. Of het dan in de toekomst ook mogelijk is om(indach- tig het klik-concept van de Smart-carrosserie) complete auto’s te assembleren in de garage om de hoek, werp ik op. Grandke: ‘Een goede vraag. Ik denk dát nog niet, maar wel allerlei kleinere con- sumptiegoederen.’ De klanten van Siemens zijn gewaarschuwd. ●

 

Vage logica onzichtbaar overal aanwezig (1996, nr. 9) FUZZY LOGICS IN CONSUMENTEN-ELEKTRONICA + TOEPASSINGEN IN INDUSTRIËLE PROCESBESTURING + OOK IN: VERKEERSMANAGEMENT, BEVEI­LIGING STROOMNET, (FINANCIËLE) BESLUITVORMING

FuzzyLogic vagelogicakaderOMSLAGARTIKEL

 

FUZZY LOGICS IN CONSUMENTEN-ELEKTRONICA + TOEPASSINGEN IN INDUSTRIËLE PROCESBESTURING + OOK IN: VERKEERSMANAGEMENT, BEVEI­LIGING STROOMNET, (FINANCIËLE) BESLUITVORMING

 

Nederland dreigt achterop te raken

 

Vage logica onzichtbaar overal aanwezig

 

Het deze maand opgerichte DICI (Delft Institute for Computational Intelligence) moet helpen voorkomen dat Nederland achterop raakt in de vage logica, de wiskundige aanpak die tegenwoordig een sterke invloed heeft in de meet- en regel­tech­niek, maar inmiddels ook zijn invloed doet gelden op veel andere gebieden van wetenschap en technologie, zoals de ontwikkeling van ken­nissys­te­men.

– Erwin van den Brink –

 

De auteur is redacteur van De Ingenieur.

 

 

Nederland heeft volgens prof.ir. H.B. Verbruggen van de faculteit Elektrotechniek van de TU Delft ten opzichte van Japan, de VS en Europese landen waaronder vooral Duitsland een achter­stand in de toepas­sing van vage logica of fuzzy logics. In Duitsland zijn grote bedrijven actief op dit gebied zoals Siemens en Klöckner-Müller, maar ook veel kleine bedrijven.

In Nederland valt vooral bij de produkt­ont­wikke­ling in het midden- en kleinbe­drijf nog een hoop zendings­werk te verrichten ondanks inspan­ningen van instellin­gen zoals het Centrum voor Micro-Elektro­nica (CME). DICI beoogt voor bedrijven de weg te effenen naar toepasbare kennis (bij de TU en TNO) over vage logica en meer in het algemeen over computational intelligence.

Wat is vage logica? De wiskundige methode is het eerst toegepast in de regeltechniek. Waarom? Mensen regelen eigenlijk alles vaag, dat wil zeggen niet met exacte waarden. De proces­opera­tor die ’s morgens onder de douche staat regelt volgens de ‘als-dan’-regel die zo kenmerkend is voor vage regeling: ‘Als het water me te heet is, dan meng ik een beetje koud bij’, maar vraag hem niet wat ’te heet’ is en wat ‘een beetje koud’. Als hij om negen uur plaats neemt achter zijn controle­paneel in de zeeppoeder­fa­briek doet hij vaak onbewust iets soortge­lijks. Boven in een droogkolom zit een sproeikop die zeepsus­pensie in druppels verspreidt die onderin moeten neerdalen als vlokken van ongeveer gelijke grootte; derhalve een proces met vage (namelijk ‘ongeveer’) regelaspecten. Weliswaar is het proces voorzien van een aantal conventionele PID-regelaars ­(zie Kader), maar een aantal regelkringen wordt door de proces­opera­tor bestuurd.

‘De operators hebben in de loop der jaren zo veel ervaring opgebouwd, dat het proces redelijk in de hand te houden is’, legt Verbruggen uit. ‘Toch gaat het wel eens mis. Er doen zich onvoor­zie­ne omstandigheden voor, een operator heeft zijn dag niet, zijn inschatting is onjuist geweest. Als je hem vraagt wat voor regels hij hanteert, dan weet hij dat niet eens precies. Door de operator gade te slaan kunnen we verban­den ontdekken tussen de te regelen grootheden en bepaalde externe omstandig­heden zoals temperatuur en voch­tigheid. Die verbanden hebben een ‘als-dan’-karakter. Dat is een andere beschrijving dan een fysisch of mathematisch model waaraan technici doorgaans gewend zijn.’

 

‘Short cut’

De verbanden zijn niet lineair, maar ‘vaag’, rekkelijk, elastisch als het ware, net als in de alledaagse werkelijkheid waar we verbanden aangeven in taal en niet in wiskunde. Verbruggen: ‘Zo’n linguïstisch model kan daarom de werkelijkheid van een proces heel goed beschrijven. Soms is het zelfs de enige mogelijkheid om een systeem te beschrijven. Of het zou volgens de klassieke methode een enorme exercitie zijn. Ver­taald in hard­ware zou dat enorme rekencapaciteit vergen. Vage logica is in die zin een short cut die even goede resul­taten oplevert met gebruik­making van bescheiden modellering en idem dito reken­kracht.’

Voor de moderne industriële procesbesturing is vage logica dan ook bijzonder geschikt. ‘Dank zij toepassing van vage logica kunnen menselijke ervaring en geleidelijkheid van overgangen tussen verschillende regelacties goed in een besturingssysteem worden verwerkt’, aldus Verbruggen.

Elektronische circuits, kleppen, ventielen en motoren kunnen echter niet met deze ‘als-dan’-regels en vage infor­matie uit de voeten. Zij zijn afhankelijk van harde waarden.

Exacte meetwaarden worden daarom eerst omgezet in vage grootheden zoals ‘heet’, ‘warm’ of ‘koud’. Een besturingssysteem dat werkt met ‘als-dan’-regels gebaseerd op vage logica, neemt dan een ‘vage’ beslissing zoals ‘voeg een beetje koud water toe’. Voor de aansturing van kleppen en ventielen moet die vage beslissing worden vertaald in een hard, crisp, getal: dit heet defuzzificatie, ‘ontvaging’.

Het mooie van vage logica is dat die omzetting van menselijke waarneming en besturing naar kunstmatige besturing veel natuurlijker is, veel meer aansluit bij de wijze waarop wij zelf met kennis omgaan, dan andere vormen van transforma­tie die voornamelijk zijn gebaseerd op ‘klassieke’ mathematische modellen zoals diffentiaalvergelijkingen .

 

Soepeler regelgedrag

Fuzzificatie is nodig om de transformatie te verzorgen van het crispe domein (bijvoorbeeld 35 °C) naar het vage domein (warm, heet of aangenaam). Verliezen we dan niet enorm veel informatie? Wel als onze indeling star is, harde grenzen heeft zoals 25…35 °C is aangenaam, 35…50 °C is warm en hoger dan 50 °C is heet. Maar dat is niet zo: vage verzamelingen overlappen elkaar namelijk gedeeltelijk, waardoor een temperatuur zowel aangenaam, warm als heet kan zijn, zij het in verschillende mate. Die mate waarin een temperatuur behoort tot een vage verzameling is een ander kenmerk. In de vage logica heet dat de ‘lidmaatschapsfunctie’ en zij wordt uitgedrukt in een fracti­oneel getal van 0 tot en met 1. De functie heeft vaak een trapezi­um- of piramidevorm. Waar de trapezia, dan wel pyrami­den, elkaar overlappen, zie je dat oplopen­de waarden in afne­mende mate behoren tot de ene verzameling en in toenemende mate tot de andere: de overgang is geleidelijk, vaag.

Door te rekenen met zulke vage verzamelingen krijg je een over het algemeen soepel regelgedrag. De regeling is rustiger­ omdat de instel­waarden veel geleidelijker veran­deren. Een buschauffeur rijdt ook niet exact midden op de rijbaan, die nooit zuiver kaarsrecht is. Zou hij dat wel doen, dan werden zijn passagiers waar­schijnlijk wagen­ziek van het ge­slinger. Derge­lijk stuurgedrag zien we terug bij handmatige procesbestu­ring, maar ook in met fuzzy logics geregelde autofo­cussystemen van (Japanse) video­- en fotocamera’s.

 

Kennissystemen

Japanners waren de eer­sten die fuzzy logics – ‘foezai’ in Anglo­japans – op grote schaal toepas­ten in (draagbare) consumenten-elektronica. Europeanen pasten eerder al fuzzy logics toe in regelsystemen in de cementindustrie.

Vage logica vergt aanzienlijk minder rekencapaci­teit. De benodigde micro-elektronica is daardoor compacter te houden. Verbruggen: ‘Samen met mijnbouwkunde hebben we de slijtage van een tren­cher, een sleuvengraver, beschreven. Hoe snel de tanden op de graafketting verslijten is afhankelijk van de bodemgesteld­heid; die is niet exact te omschrijven, maar duidelijk is wel het causale verband tussen bijvoorbeeld de grootte van de te ontgraven rotsblokken en de slijtagesnelheid: if blocksize is small then bitconsumption is small, waarbij bitconsumption staat voor de slijtage van de graaftan­den. Zo hebben we een model gemaakt met zestig regels die heel goed de slij­tage beschrij­ven, zodat je weet hoeveel reserveon­derdelen er nodig zijn.’

Ook is vage logica bruikbaar voor expert- en decision support-­systemen die redeneren op basis van kennis die gerepre­senteerd kan worden in ‘als-dan’-regels. In verzekerings­bedrijven kunnen kennissystemen worden gebruikt voor het berekenen van de risico’s en dus van de premies (zie De Inge­nieur, nr. 15 van 27 september 1995, blz. 26-29). Daarnaast is vage logica geschikt voor systemen die vage contouren en patronen moeten herkennen, bijvoor­beeld een systeem dat hand­ge­schre­ven tekst kan ‘lezen’ of een systeem dat in staat is om op een satellietop­name bewolking van een bepaald type te herkennen.­

Een dergelijk patroonherkenningssysteem zou weer onder­deel kunnen zijn van een veel groter kennissysteem dat uiteindelijk in staat zal zijn weersverwachtingen te maken, legt dr.ir. J.C.A. van der Lubbe uit. Hij is verbon­den aan de vakgroep Informa­tietheorie van de faculteit Elek­trotechniek TU Delft en een van de initia­tiefne­mers van DICI. Meteo­rologi­sche ken­nis, vooral het interpreteren van satelliet­beelden, heeft vage aspecten; wanneer is sprake van een wolk, van sluierbewolking en wanneer van heiig weer?

In zo’n kennissysteem wordt, anders dan bij procesbesturing, geen output teruggekop­peld. Het weer valt immers niet te regelen. Er kan wel een terugkoppe­ling achteraf in worden opgeno­men waarbij het systeem kijkt in hoeverre de opgegeven weersverwachting is uitgekomen en waar dat aan ligt. Dit leren kan met bijvoorbeeld neurale netwerken (zie De Inge­nieur nr. 20 van 6 december 1994, blz. 6-10), in dit geval fuzzyneurale net­wer­ken (omdat zij niet altijd op vage logica gebaseerd hoeven te zijn).

 

Achterstand

Van der Lubbe werkt samen met het KNMI (Koninklijk Nederlands Meteorologisch Insti­tuut) en het NLR (Nationaal Lucht- en Ruimtevaart­laboratorium) aan een systeem voor meteorologen dat automatisch weersatel­liet­beelden interpreteert.

Van der Lubbe: ‘Om te zeggen dat Nederland hopeloos achterloopt is te sterk uitgedrukt, maar in het bui­tenland is men veel verder. In Duitsland bijvoorbeeld bestaan al veel grote door de overheid gesteunde samenwer­kingsverbanden. Daar wordt alles ingezet op vage logica. Het is verbazingwekkend dat wij in Nederland niet voortva­render zijn.’

‘We zijn in Nederland vrij goed in fundamenteel onderzoek, maar vage logica wordt niet als zodanig gezien; als zuiver wiskun­dige behoor je je er niet mee bezig te houden’, zo verklaart Ver­bruggen het gebrek aan belangstelling voor vage logica. ‘In Duitsland is men toch pragmati­scher. Dat is een land waar spullen gemaakt moeten worden. Vage logica komt daarbij van pas. Wij zijn geen maak­land.’ Van der Lubbe denkt dat de Duitse cultuur, waarin men wat filosofischer is ingesteld, een vrucht­baarder bodem is voor vage logi­ca.

Vage logica bete­kent niet alleen een fundamenteel andere benadering van het oplos­sen van meet-, regel- en besturingsproblemen, maar is volgens Van der Lubbe ook een breuk in het Westerse Cartesiaanse denken: de tegenstelling tussen ener­zijds de werkelijkheid en anderzijds het beeld dat wij hebben van de werkelijkheid; een typische vorm van bipolair denken: iets is waar of niet waar. In het Oosterse denken heeft nooit zoiets bestaan als de klassie­ke logica. Mogelijk verklaart dat waarom vage logica daar zo’n hoge vlucht heeft genomen.

De fractionele getallen, waarin vage logica uitdrukt in welke mate iets behoort tot een bepaalde verzameling, interpre­teren wij westerlingen al gauw als kansgetallen, statistiek: in ons wiskundig denken is gewoon geen plaats voor nuanceringen in termen van ‘een beetje waar’.

Van der Lubbe: ‘Mensen zijn in het dagelijkse leven meesters in het omgaan met vaagheid, maar we leren het af in de wiskunde.’

Toch werd al in de Europese klassieke oud­heid behalve aan klassieke logica ook veel gewerkt aan vage logica, door Plato en Aristoteles; Plato onderscheidde gradaties tussen waar en on­waar. Van der Lubbe: ‘Nu langzamerhand het Cartesiaanse denken op de helling wordt gezet, ontstaat ook hier meer ruimte voor vage logica. Alleen binnen de technische universiteiten hebben we daar nog moeite mee. Buiten de TU’s tref je nauwe­lijks nog Cartesianen aan. Daar is men al lang af van het bipolaire denken in begrippen zoals waar en onwaar.’

 

 

 

 

(BIJSCHRIFTEN)

 

(BIJ OPENINGSBEELD DIA HOLLANDSE HOOGTE + OPENGEWERKTE CAMERA)

Op grote schaal werd fuzzy logics voor het eerst toegepast door de Japanners in consumenten-elektronica.

(Foto’s: Roberto Rizzo/HH, Amsterdam; Canon, Hoofddorp)

 

 

 

 

(QUOTE BIJ PORTRETFOTO)

‘Mensen zijn in het dagelijkse leven meesters in het omgaan met vaagheid, maar we leren het af in de wiskunde’, prof.ir. H.B. Verbruggen (links) en dr.ir. J.C.A. van der Lubbe

(Foto: Michel Wielick, Amsterdam)

 

 

(BIJ FOTO 1 EN 2)

Bij TNO en de TU Delft is een robotarm ontwikkeld die wordt bestuurd met vage logica; de arm is een hulpmiddel voor gehandicapten.

(Foto’s: TNO TPD, Delft)

 

 

(BIJ FOTO 3)

Met behulp van fuzzy logics is de slijtage van een sleuvengraver beschreven; aan de hand van een model met zestig regels kan worden bekeken hoeveel reserveonderdelen er nodig zijn.

(Foto: Vermeer International, Goes)

 

 

 

 

 

(KADER)

Onderzoek

 

DICI houdt zich bezig met afstemming van onder­zoek en onderwijs op het gebied van vage logica, neurale netwerken, neurofuzzy algoritmen, approximate reasoning, fuzzy expertsystemen, genetische en evolutionaire algoritmen en chaotische systemen. DICI richt zich behalve op meet- en regeltech­niek en patroon­herkenning ook op nieuwe toepassingsgebieden zoals foutdetec­tie en -diagnose, maatschappelijke problemen, onder­steuning van besluitvorming, financiële be­slisproblemen en planning- en schedulingproblemen.

Informatie: prof.ir. H.B. Verbruggen (E-mail: verbruggen@et.tu­delft.nl) of dr.ir. J.C.A. van der Lubbe (E-mail: vdlub­be@et.tudelft.nl), TU Delft, faculteit der Elektrotechniek, postbus 5031, 2600 GA Delft, fax (015) 278 66 79.

 

 

 

 

 

(KADER)

Fuzzy regelaar

 

Bij een PID-regelaar staat ‘P’ voor het stuursignaal dat evenredig, proportioneel, is met het foutsignaal. De ‘I’ staat voor de regelactie ‘integreren’: de regelaar kijkt terug in de tijd naar het verloop in het verschilsignaal door dit te integre­re­n. Op den duur zorgt deze regelactie ervoor dat het foutsignaal nul wordt. De ‘D’-regelac­tie differen­tieert het verschil­signaal: het meet de komende verandering en stemt daar de sturing op af.

In een PID-regelaar kunnen echter geen vage causaliteiten tussen subjectieve noties worden opgenomen zoals ‘als water te heet, dan een beetje koud bijmengen’. Daarvoor is vage logica nodig.

Op 19 april 1996 had in Leeuwarden een symposium plaats, georgani­seerd door de Noordelijke Hogeschool Leeuwarden, waar prof.ir. H.R. van Nauta Lemke, oud-hoogle­raar regeltechniek in Delft en in Nederland sinds begin jaren zeventig pleitbezorger van vage logica, de werking van een (willekeu­rige) vage regelaar uiteenzette.

Het voorbeeld heeft betrekking op een eenvoudig proces met een enkele in- en uitgang, geregeld door een fuzzy regelaar (afbeel­ding 1) die gebruik maakt van een proportione­le en een differenti­ërende regelactie. Van belang zijn het verschilsignaal E en de afgeleide dE. E is het verschil tussen de gemeten en gewenste waarde terwijl dE de verandering weergeeft van E. Beide worden gemeten en als ingangssignaal voor de regel­aar ge­bruikt, terwijl de uitgang U van de regelaar de (bij)sturing is van het proces.

Aangezien de meetwaarden E en dE in geval van een technisch proces niet vaag zijn maar hard, of crisp, moeten de grootheden eerst worden geclas­sificeerd, dat wil zeggen worden onder­gebracht in vage verzame­lingen. Die verzamelingen komen over­een met subjectieve noties zoals ‘groot’ en ‘klein’. Een meetwaarde is dan zowel groot als klein, maar in een verschillen­de mate die varieert van 0 tot 1 (of 0 % tot 100 %). De waarde is bijvoor­beeld met een mate van 0,4 ‘groot’ en een mate van 0,8 ‘klein’; de verschillende lidmaatschapsfuncties zijn niet elkaars complement, hun som hoeft niet atijd 1 te zijn.

We gaan er in dit voorbeeld vanuit dat vijf vage verzamelingen worden gedefi­nieerd voor zowel het signaal E als de afgeleide dE (afbeelding 2). De namen van die verzamelingen zijn negatief groot (NB), negatief klein (NS), ongeveer nul (Z), positief klein (PS) en positief groot (PB).

De sturing U wordt geclassificeerd in zeven vage verzamelin­gen (afbeelding 3): negatief groot (NB), negatief gewoon (NM), negatief klein (NS), ongeveer nul (Z), positief klein (PS), positief gewoon (PM) en positief groot (PB).

Het kennissysteem bevat de logische kennis over de besturing van het proces, in de vorm van kennisregels die vertellen wat er moet gebeuren in termen van ‘al­s-dan’-regels: ‘Als A, dan B’ Een voor­beeld van een dergelijke kennisregel is: als de fout E positief klein (PS) is en de veran­dering van de fout, dE, is onge­veer nul (Z), dan moet de sturing U positief klein (PS) zijn.

Tegelijkertijd kan op de gemeten waarde E echter ook een andere kwali­ficatie van toepassing zijn, zij het doorgaans in een andere mate of met een andere lidmaatschapsfunctie. Bijvoorbeeld: E is positief groot. Zoiets geldt ook voor dE: die waarde kan tege­lijker­tijd posi­tief klein zijn. Er zijn derhalve ook gelijk­tijdi­g meer kennisregels van kracht, zij het in verschil­lende mate. De geldigheid van de gelijktijdige regels, in casu de stuurwaarde U die uit elke regel voortvloeit, wordt eveneens gewogen in ‘waarheidsgraden’ van 0 tot 1. Uit die weging wordt uitein­delijk een definitieve ‘harde’ stuurwaar­de herleid.

Zowel E als dE behoren elk tot vijf vage verzame­lin­gen en dus zijn 25 kennisregels mogelijk, gerangschikt in een matrix (afbeelding 4). Meer informatie bevat het toe­standsvlak (afbeelding 5) waarin E en dE tegen elkaar zijn afgezet. De gear­ceerde stroken zijn de geleidelijke overgangen tussen de vage verzamelingen. De romeinse en arabische cijfers duiden de vage verzamelingen aan van E respectievelijk dE, de letters die van U.

Het zogenoemde ‘inferentiesysteem’ bepaalt welke van deze 25 regels in een bepaalde situa­tie van belang zijn. Voor de waarden van E en dE op tijdstip 1, E1 en dE1 zijn twee regels relevant waar­bij de lidmaatschap­s­functie tussen haakjes staat:

-als E is positief klein (0,75) en dE is positief klein (1), dan is U positief medium;

-als E is positief groot (0,25) en dE is positief klein (1), dan is U positief groot.

De geldigheid van de regel, in casu van de voorgeschreven stuuractie U, is uit oogpunt van voorzichtigheid doorgaans gelijk aan de laagste waarde van de twee lidmaatschapsfuncties die horen bij E en dE. Hoe de waarden van E en dE worden getransponeerd naar U is te lezen in afbeelding 6.

Een tweede taak van het kennissysteem is: uit de geldigheid van de relevante kennisregels de resulterende sturing berekenen. U wordt als het ware bepaald uit een gewogen gemiddelde van de sturing die door de actieve regels wordt voorge­schre­ven. Een manier is de zwaartepuntmethode. We nemen de omtrek­ken van de twee grafieken die de verzamelingen U is positief klein en U is positief medium weergeven. Deze grafieken toppen we af op achtereenvolgens 0,75 en 0,25. Van de samengevoegde figuur die zo ontstaat nemen we het zwaartepunt; dát nu komt overeen met een harde, specifie­ke, stuurwaarde U.

 

 

(BIJSCHRIFTEN TEKENINGEN KADER)

 

Afb. 1

 

Afb. 2

 

Afb. 3

 

Afb. 4

 

Afb. 5

 

Afb. 6

Siemens geeft topprioriteit aan interne milieuzorg (1994 16)

Siemens_halogeenvrij1994 16

 

 

(STREAMER)

NIEUWE HALOGEENVRIJE KUNSTSTOF VOOR PCB’S + VLOEIBAAR CHEMISCH AFVAL BIJ PRODUKTIEPROCESSEN TERUGGEDRONGEN

 

(RUBRIEK)

INNOVATIEF

 

(chapeau)

Siemens geeft topprioriteit aan interne milieuzorg

 

(Kop)

Geen pc meer op de vuilnishoop

 

(intro)

De Duitse overheid neemt harde maatregelen om producenten te dwingen hun verantwoordelijkheid te nemen in het terugdringen van de almaar groeiende huishoudelijke afvalstroom. Siemens besloot van de nood een deugd te maken en investeerde in nieuwe milieutechnieken.

 

– Erwin van den Brink –

 

(klein en vet)

De auteur is redacteur van De Ingenieur.

 

Siemens heeft als grote industriële producent in Duitsland met twee categorieën milieuverontreiniging te maken. In het wes­ten loopt het moderne consumptiepatroon spaak en dwingt de overheid Siemens als producent van consumentenelektronica zijn aandeel te nemen in het verminderen van de huishoudelijke afvalstro­men. In het voormali­ge Oost-Duitsland heeft Siemens bedrijven opgekocht waarvan de produktieprocessen zó vervuilend zijn dat wij die als ‘voor­oorlogs’ zouden kwalificeren. Interne milieu­zorg is vooral daarom bij Siemens topprioriteit. Het feit dat de maximum gevangenisstraf voor milieudelicten in Duitsland wordt verhoogd van vijf naar tien jaar, is daar niet vreemd aan, aldus dr. Wolf-Eberhard Schiegl hoofd van het stafbureau voor mi­lieube­scherming binnen de concernafdeling Produktie en Logis­tiek.

Duitsland loopt in Europa voorop in maatregelen die ertoe moeten leiden dat de afvalstroom kleiner wordt. De maatregelen die moeten leiden tot het hergebruiken van gescheiden facties in het huisvuil zijn daarbij niet onomstreden, maar de industrie beschouwt zulke affaires als aanloopproblemen en heeft zich er, zo bleek tijdens een rondreis langs enkele Siemensvestigingen, volledig mee verzoend dat milieukosten verdisconteerd gaan worden in de produktieprocessen. Die kosten dienen dus zoveel mogelijk te worden uitgebannen.

De nieuwe verordening op ‘elektronisch afval’ kan de internationale concurrentiepositie van de Duitse industrie aanvanke­lijk onder­mijnen, maar soortgelij­ke maatregelen zullen op Europees en wereldhandelsniveau ongetwijfeld niet uitblijven. Degene die nu zijn research richt op deze problematiek heeft dan een voorsprong, meent dr. Peter-Jörg Kühnel, hoofd Product Recycling bij Siemens.

De nieuwe overheidsmaat­regel verplicht detailhandel en fabrikant om afgedankte elek­tronica en elektrische appara­ten terug te nemen van de gebrui­ker. Siemens ziet dit niet als een eigen bedrijfsactiviteit, maar verwacht dat er steeds meer gespecia­liseerde ‘ontmantelingsbedrijven’ zullen komen. Volgens Schiegl werkt dit beter dan het statiegeldsysteem: ‘Statiegeld op verpakkingen kost de Duitse economie vier miljard D-Mark per jaar.’ De opzet van de hele logistieke keten staat echter nog in de kinderschoenen.

In de Benelux, Frank­rijk, Zwit­ser­land en Oosten­rijk zijn of worden soortge­lijke verorde­ningen voor de verwer­king van ‘elektro­nisch afval’ van kracht. Medio 1995 wordt in Nederland een Algemene Maatregel Van Bestuur (AMVB) van kracht die verwijst naar het hoofdstuk afval­stoffen in de Wet Milieuhygine. Die AMVB maakt producen­ten van wit- en bruingoed, volgens het minis­terie van VROM, ‘con­form het beleid van de wieg tot het graf ver­antwoor­delijk voor hun produkten’.

De Siemens Nixdorf PCD 4L personal computer (waarvan de materia­len voor 90 % zijn te herge­bruiken) zou dit bedrijf het zo vurig gewenste succes op de pc-markt kunnen geven indien óók het consu­mentenge­drag steeds ‘groe­ner’ wordt. Doordat de produktcycli van elektronica (met name personal computers en consumentenelektronica) en elektrische huishoude­lijke produkten steeds korter worden, dreigt de afvalberg ons boven het hoofd te groeien. Alleen al in Duits­land wordt elk jaar 1,5 miljoen ton afval van elektronische en elektrische apparaten geproduceerd. Volgens Hansjürgen Kreft, jurist bij het Duitse ministerie voor Milieu, zullen hergebruikvriendelijke apparaten over drie tot vijf jaar beschikbaar zijn. Zij zullen dan zo rond 2005 opgebruikt zijn. Voor pc’s zal dat eerder zijn.

Vooral het feit dat de levenscyclus van computers door de komst van steeds nieuwe generaties en snellere processoren in hoog tempo wordt verkort, staat haaks op het hergebruikstreven. Kühnel denkt dat dit dilemma is op te lossen door een andere afzetconstructie: niet meer gewoon verkopen, maar produkten leasen. De fabrikant, die eigenaar van het apparaat blijft, kan verouderde produkten innemen, renoveren en weer opnieuw op de markt brengen. Bij de afzet van fotokopieerapparaten heeft die construc­tie geleid tot stelselmatige verbeteringen in de apparatuur.

 

Nieuwe brandvertragende kunststof

Probleem blijft het in de apparaten verwerkte plastic. Dat zal bij een produktrenovatie onvermijdelijk moeten worden vervangen. Volgens Kühnel is het niet economisch kunststof onderde­len opnieuw te gebruiken. Afgedankt materiaal levert het meeste op door het te ver­branden. Zo wordt er tenminste nog nuttige energie uit gehaald.

Probleem is dat veel van de in elektronica verwerkte kunststof een halogeenverbinding bevat waardoor deze materialen voor 8 tot 10 % bestaan uit broom. Door deze verbindin­g wordt het materiaal brandvertragend gemaakt. Bij verbranding kan giftig gebroomeerd dibenzo­dioxine en dibenzofuran vrijko­men -verbindingen waartoe de beruchte ‘Seveso-vergif­ten’ eveneens behoren. Bo­vendien wordt in sommig materiaal het broomgehalte verlaagd door toevoeging van antimoontrioxide waarvan wordt aangenomen dat het kankerverwekkend is.

Om een alternatief te vinden voor de broomverbinding heeft Siemens een onderzoeksproject opgezet samen met Bayer en Hoechst, gesteund door het ministerie voor Onderzoek en Technologie, het Instituut voor Stralingsonderzoek, de universi­teit van Bayreuth en het Kunststofinstituut in Darmstadt. In het aldus ontwikkelde nieuwe materiaal zorgen een fosfor- en een stikstof­ver­bin­ding voor de brandvertragendheid. De gassen die het materiaal tijdens verbranding afgeeft, zijn minder brand­baar. Bovendien verhinde­ren zij dat de hitte van de vlam het materiaal bereikt doordat zij een glasachtige isolerende film op het oppervlak vormen.

Bayer en Hoechst kunnen het als zij willen op de markt brengen. Sie­mens heeft niet het alleen­recht, zegt dr. Wolfgang Rogler van de onder­zoek- en ontwikke­lingsafdeling van het concern. Het materiaal is even­wel (nog) niet te koop. De kennis die Siemens heeft omtrent de toepas­sing geeft het bedrijf volgens Rogler een voorsprong van twee tot drie jaar op de concurrenten. De ontwikkeling van PAIC (polyaminoarylisocyanuraat) heeft zo’n f 17 miljoen gekost. Een tamelijk bescheiden bedrag, maar de grote concur­rentie van polymeren uit het Verre Oosten ver­kleint de mogelijkheid tot grote investeringen in dergelijke projec­ten, aldus Rogler.

 

Vermindering van de afvalstroom

De succesvolle introductie van nieuwe halogeenvrije brandvertragende materialen voor het persen en gieten van omhulsels en voor pcb’s (printed circuit boards) hangt af van de prijs. Siemens schat dat de prijs 20 % tot 30 % hoger zal zijn dan die van de huidige mate­rialen, mits op grote schaal toegepast – anders is de prijs nog veel hoger. Maar bij verrekening in de totale produktie van een apparaat gaat het om een prijsverhoging van het produkt van 0,2 % tot 0,4 %.

Bij de fabricage van pcb’s is een ‘snijverlies’ van 30 % van het materiaal normaal. Bij de fabricage van omhulsels van micro-elekt­roni­ca gaat gemiddeld 40 % tot 50 % van het materiaal verloren, soms zelfs 80 %. Als het materiaal een halogeenverbinding bevat, valt het onder de categorie ‘gevaarlijk afval’. De verwerking daarvan kost in Duitsland nu reeds tussen de f 1700 en f 2250 per ton. Alleen al bij de assemblage van pcb’s komt in Duitsland jaarlijks 25 000 ton afval vrij.

Toepassing van kunststoffen die bij verbranding niet toxisch zijn, is dus niet alleen van belang in verband met vernietiging van door huishoudens afgedankte apparaten, maar ook vanwege de milieukosten van produktieprocessen. Bij het verminderen van de eigen afvalstroom gaat het bij Siemens echter vooral om het terugdringen van vloeibaar chemisch afval. Een fabriek waarin alumini­um delen worden geëtst produceerde enkele jaren geleden nog 18 000 m3 afvalwater en 7000 ton sludge per jaar. De vervanging van de etslijn zou f 1,9 miljoen kosten en de exploitatie f 2,8 mil­joen per jaar. Besloten werd f 1,3 mil­joen te investe­ren in een procedé waarmee uit de ge­bruikte etsvloe­istof het oor­spron­kelijk zuur en het opgeloste alumini­um kon worden terug­gewon­nen via een proces van diffu­siedialy­se. Het zuur kan worden hergebruikt en het teruggewon­nen aluminium wordt tegen trans­portkosten verkocht. De exploi­tatiekosten daalden tot 700 000 gulden per jaar. Dergelijke initiatieven worden genomen, aldus dr. Schiegl, omdat milieuzorg, analoog aan kwaliteits­zorg, is gencor­poreerd in de bedrijfs­voering, bijvoorbeeld door een gestandaardiseerde procedure voor het ontwerpen van produkten die beoogt milieuk­osten te minimalise­ren.

 

Schoner produktieproces

Bij bestaande produkten kan vaak het produktieproces schoner worden gemaakt zonder dat veel aan het produkt wordt gesleuteld. Een van de kwaliteitsprodukten waarmee het voormalige Oost-Duitsland in het westen kon concurreren waren de in Rudolstadt gefabriceerde röntgenstraalbuizen. Volks Eigener Betrieb (VEB) ‘Phönix’ was voor de Tweede Wereldoorlog een Siemensvestiging. Siemens nam het in augustus 1991 voor het symbolische bedrag van één D-Mark over van de Treuhandanstalt. Het bedrijf heet nu weer Siemens Röhrenwerk GmbH. Het feit dat in Rudolstadt de prijs van water (dat voorheen gratis was) werd gesteld op zes gulden per kubieke meter, was een duide­lijke aanmoediging om het waterverbruik bij het galvani­seren van metalen onderdelen van de röntgenbuizen te verminde­ren. In het vernieuwde proces wordt geen glycerol meer ge­bruikt. Ook wordt al het afvalwater van de afzonderlijke galvaniseerstadia niet meer aan het einde van de produktielijn verzameld, maar wordt het binnen elk stadium zoveel mogelijk gezuiverd van nikkel, dan wel chroom dan wel ko­per. De hoe­veelheid afvalwa­ter is verminderd van 500 tot 45 m3 per week, een afname van 90 %. Bij een waterprijs van f 6 levert dat een kostenbespa­ring op van ruim een half miljoen gulden per jaar. De investe­ring bedroeg ongeveer f 1,5 miljoen en wordt dus in drie jaar terugverdiend. Ook hier blijkt schoon produceren commer­cieel de meest verstandige weg.

 

 

 

<fotobijschrift>

(Foto: Siemens, München)

Siemens Rudolstadt werkt met een vernieuwd, milieuvriendelijker proces voor het galvaniseren van metalen onderdelen van röntgenstraalbuizen.

 

<deze foto eventueel, bijschrift>

(Foto: Siemens, München)

De hoeveelheid afvalwater bij de produktie van röntgenstraalbuizen is verminderd met 90 %.

 

(bijschrift bij illustratie)

 

(Bron: Siemens)

Dit zijn de structuurformules van nieuwe materialen voor pcb’s en bekledingsmaterialen. Bij verbranding komen geen halogeenverbindingen vrij.

Gunstige arbeidsmarktpositie voor ingenieurs – Technische studie blijft goede keuze (nr. 15, 1994)

aviation-technician

 

(Rubriek)

OMSLAGARTIKEL

 

(Streamer)

ARBEIDSMARKT TOT 1998 ONTLEED + GROTE UITWIJKMOGELIJKHEDEN VOOR TECHNICI NAAR ANDERE BAAN + WERKLOOSHEID NAAR STUDIERICHTING ONDERZOCHT

 

(Bovenkop)

Gunstige arbeidsmarktpositie voor ingenieurs

 

(Kop)

Technische studie blijft goede keuze

 

(Intro)

Hoger geschoolden worden in toenemende mate het slachtoffer van werkloosheid. De technici onder hen hebben betrekkelijk weinig te vrezen. Weliswaar zijn sommige vakdisciplines gevoelig voor de conjunctuur, maar op de middellange termijn blijft een stabiele behoefte bestaan.

– Erwin van den Brink –

 

(Credit auteur)

De auteur is redacteur van De Ingenieur.

 

 

Sinds een paar jaar groeit de belangstelling voor de arbeidsmarkt voor hoger geschoolden. Eind vorig jaar publiceerde het Researchinsituut voor Onderwijs en Arbeidsmarkt (ROA) van de Rijksuniversiteit Limburg voor de tweede maal een brede analyse van de ontwikkeling van de arbeidsmarkt op de korte en middellange termijn: De Arbeidsmarkt naar Opleiding en Beroep tot 1998. Het informatiesysteem dat ROA daarvoor ge­bruikt, heeft het ontwikkeld in opdracht van het ministerie van Onder­wijs en Wetenschappen, het Cen­traal Bestuur voor de Ar­beids­voorziening (CBA) en het Lande­lijk Dienstverlenend Cen­trum voor Studie- en Beroepskeu­zevoor­lichting (LDC). De gegevens komen van het CBS, het CPB en het CBA en uit het onderwijs. Het ROA-model voorspelt de groei van de werkgele­genheid en de vervangingsvraag – afgeleid uit demografische gegevens. Het confron­teert beide vraagcomponenten met de instroom van nieuwkomers op de markt.

Het onderzoek beschouwt de arbeidsmarkt bovendien voor het hele spectrum van opleidingen van laag tot hoog en geeft geen gedetailleerde gegevens per afzonderlijke studierichting voor hoger opgeleiden. Dat doet het onlangs verschenen rapport De Werkloosheid onder Hoger Opgeleiden in 1993 van het Leidse onderzoekbu­reau Research voor Beleid wèl. Dit rapport is de weerslag van een onderzoek onder in beginsel maar liefst 32 000 werk­loze hoger opge­leiden. Het geeft een zeer gedetailleerd en actueel beeld van de arbeids­markt voor mensen met een HBO- of academische opleiding. Het beeld is weliswaar scherp, maar ook sta­tisch. Het geeft alleen de situatie op dit moment weer. Het perspec­tief is bovendien eendi­men­sio­naal: de werk­loosheid is alleen onder­zocht per afzonder­lijke studierichting.

ROA bekijkt de werkloosheid daarentegen niet alleen vanuit de studierich­ting (welke kans geeft dit diploma mij op de baan waarvoor ik ben opgeleid) maar ook vanuit de beroepen. Voorbeeld: vergeleken met andere technische studies biedt de elektrotechniek momen­teel een vrij slecht vooruitzicht op een baan volgens Research voor Beleid. ROA verwacht echter een vrij sterke groei van de journa­listie­ke werkgele­gen­heid. Een elektrotechnicus die zou besluiten tech­nisch publicist te worden (opleiding: elektro­techniek, vak: journalist) krijgt zodoende een gunstiger ‘arbeids­markt­per­spec­tief’.

 

Grote flexibiliteit

Het ROA ontleent ook actuele inzichten aan de HBO-monitor, een jaar­lijkse enquête in opdracht van de HBO-Raad van degenen die een jaar geleden aan een HBO-oplei­ding zijn afge­studeerd. Deze bestaat nu drie jaar. Dit meetin­strument geeft op gedetailleerd niveau informatie over de maatschappelijke positie, het beroep, inkomen, intredewerkloosheid (nog geen baan hebben na afstuderen) en dergelijke. Voor de academici be­staat een dergelijk meet­in­strument echter nog niet. ‘Uni­versiteiten stellen zich veel autonomer op ten opzichte van de Vereniging Samenwerkende Nederlandse Universiteiten (VSNU) dan de HBO-instellingen zich op­stellen ten opzichte van de HBO-Raad’, zegt dr. Andries de Grip van het ROA. Door het gebrek aan coördinatie zijn er slechts fragmen­ta­rische gegevens. Zo is bij­voor­beeld door een gericht onder­zoek van ROA wèl bekend dat van aan de TU Delft afge­studeerde civiel-tech­nici 97 % na één jaar een baan heeft. ‘Opvallend is dat men vrij snel doorgroeit naar management­functies’, zegt ROA-onderzoeker drs. Ron Dek­ker.

Ook volgens de laatste HBO-monitor verhoudt de ar­beidsmarkt voor technici zich in het algemeen nog steeds gunstig tot de arbeidsmarkt als geheel. De zwakke plekken zijn te vinden in de investeringsgoe­deren­in­dustrie. De Grip: ‘Daar is de werkgelegenheid heel conjunctuurgevoe­lig, met name in de basisme­taal en in de bouw. Daar werken veel elektrotech­nici en dat verklaart waarom hun vooruitzichten de laatste tijd minder goed zijn. Volgens de HBO-monitor waren tech­nici vorig jaar duide­lijk slechter af in het vinden van een baan dan het jaar daar­voor. De mid­dellange termijn laat een opti­mistischer beeld zien.’

Technici hebben het voordeel van wat ze bij ROA een ‘groter flexibili­teitspotentieel’ noemen. Ingenieurs kunnen betrekkelijk gemak­kelijk uitwijken naar niet-technische beroepen, commerciële of managementfunc­ties. De omgekeerde weg, met een commerci­le of manage­mentopleiding techniek gaan bedrij­ven, is uitge­slo­ten. Mensen met een technische opleiding hebben daarom minder last van een overschotsituatie dan mensen uit studierichtingen met minder uitwijkmogelijkheden.

Dekker: ‘Technici hebben bovendien minder hooggespannen verwachtingen van hun beroepsuitoefening. Afgestudeerden met een economisch-administratieve opleiding rekenen op een mooie leidinggevende baan, maar moeten hun brood ook vaak verdienen als gewone verkoper langs de weg.’ Technici lijken dus gemakkelijker bereid in een laagconjuctuur elke kans te pakken. Ze worden bijvoorbeeld technisch vertegenwoordiger, ‘langs de weg’. De minder hooggespannen verwachtingen zijn anderzijds juist vaak reden om geen tech­nische studie te kiezen. De Grip: ‘Het aantal technici als deel van de hoger opgeleiden neemt trendmatig af. Dat heeft te maken met imago en beloning.’ Er gaan heel wat technici voor hun ‘vak’ verloren doordat zij terechtkomen in de vaak aantrek­kelijker manage­ment­functies. De Grip: ‘Daarom moeten er in de technische beroepen betere loopbaan­perspectie­ven komen.’

 

Groei in bedrijfstakken

Op de arbeidsmarkt werken zo allerlei verdringings- en substitutiemechanismen, vooral wanneer het met de economie minder goed gaat. Als dan in de economische beroepen relatief nog de meeste banen zijn te vinden, zullen mensen met andere opleidingen, onder wie technici, zich massaal op deze sector van de arbeidsmarkt storten met als mogelijk gevolg dat voor de ‘economen’ de kansen er niet beter op worde­n.

Juist vanwege deze verdringingsmechanismen bekijkt het ROA de arbeidsmarkt in drie dimensies: naar bedrijfs­tak, beroep en opleiding. De beroepssecto­ren (technisch, economisch, verzorgend) zijn onderver­deeld in afzonder­lijke beroeps­klassen (direc­teuren, bouwvakker, winkelpersoneel) en de opleidingscategorieën in afzon­derlij­ke typen (mavo, MTO, lerarenopleidingen).

Bekijken we de bedrijfs­takken, dan valt op dat de afge­lo­pen jaren in de sectoren vervoer en communica­tie alsmede de kwartaire dienst­verlening de werkgele­genheid fors is ge­groeid, met ongeveer 2 % per jaar. In de landbouw, visserij, bosbouw en de energiesector was de werkge­legenheids­afname fors, maar ook de bouw en de overheid zagen een terug­loop van het aantal werken­den.

De komende jaren zal de werkgelegenheid minder toenemen dan de afge­lopen jaren, gemiddeld zo’n 0,7 % per jaar. De werkgelegenheid in de industrie zal (ver­der) krimpen, met uitzondering van die in de che­mie. De handel en de overige commerciële dienstverlening groeien tot 1998 meer dan gemiddeld, evenals de kwartaire dienstverlening (met name de ouderenzorg als gevolg van de vergrijzing).

Bekijken we meer in detail de richtingen binnen de opleidingsca­tegorieën, dan valt op dat de werkgelegenheid voor degenen met een hogere economische opleiding (economie, rechten, bedrijfs- en bestuurskunde op zowel HBO- als academisch niveau) nog de grootste groei zal laten zien, maar die groei neemt af van 8,7 % per jaar in de periode 1990-1992 tot 2,9 % in de periode 1993-1998. De werkgelegenheid voor degenen die uit het hoger technisch en agrarisch onder­wijs komen, zal toenemen van 1 % naar 2,7 % per jaar. Dit is dan ook de enige oplei­dingscategorie waarvoor ROA het arbeidsmarktperspectief kwali­ficeert als ‘goed’.

 

Beroepsklassen

ROA bekijkt de totale vraag naar nieuwkomers op de arbeidsmarkt (zoge­noemde baanopeningen, dus groei- en vervangings­vraag) per beroepsklas­se en per opleidingstype. De vraag is uitge­drukt als het jaarlijkse groeipercentage van het totaal aantal werkenden in die klasse of in dat type. Een baanopening is niet hetzelfde als een vacature, omdat vacatures ook ontstaan door interne verschuivingen van personeel.

De top tien van beroepsklassen wordt aangevoerd door leidingge­ven­den in de produktie, bedrijfskundigen en directeuren. Er zijn hier tot 1998 ruim 100 000 nieuwe banen te vergeven. Dat komt overeen met een groei van 4,9 % per jaar. Gemid­deld gaat het om 17 % uitbrei­dingsvraag en 83 % vervan­gings­vraag. De grootste uit­breiding in de voor hoger opgeleide techni­ci meest relevan­te beroepsklasse doet zich voor in die van informatici (sys­teem­analisten, -programmeurs en -be­heer­ders); daar ontstaan ongeveer 22 000 extra banen, een groei van 3,1 % per jaar.

Beschouwd naar opleidingstype richt de totale vraag naar nieuwkomers op de arbeids­markt zich in absolute zin vooral op het techni­sche en het econo­misch-admi­nistratieve beroepsonderwijs op middelbaar niveau: 147 000 econo­misch-administra­tie­ve vacatures en 125 000 techni­sche baanopeningen. Het aantal wer­kenden afkom­stig uit die oplei­dings­typen groeit per jaar respec­tie­velijk met 3,9 % en 3,4 %.

In relatieve zin daarentegen ontstaan juist veel meer banen die een opleiding vereisen op hoog niveau, namelijk in het technisch-wetenschappe­lijk en technisch hoger beroepson­derwijs en ook in het weten­schap­pelijk on­derwijs in de eco­nom(etr)ie en bedrijfskun­de. Tot 1998 groeit het totaal aantal banen voor deze opleidingen met ongeveer 5 % tot 6 % per jaar.

 

Instroom afstuderenden

Hoe verhoudt deze vraag op de arbeidsmarkt zich nu tot het aanbod, dat wil zeggen de instroom van afstuderenden, en welke marktpositie volgt daaruit? De instroom van afstuderenden met een technisch-wetenschappe­lijke opleiding blijkt tot 1998 vrijwel overeen te komen met het aantal ver­wachte baanopeningen: ongeveer 18 000. De afstude­renden met een bedrijfskun­dige of econom(etr)ische opleiding op academisch niveau hebben het minder gemakkelijk. Zij zijn met bijna 18 000, terwijl er ongeveer 16 000 vacatu­res zullen zijn.

Er worden 34 500 vacatures verwacht voor HBO-ers met een technische opleiding, terwijl zich de komende drie jaar 27 900 HBO-technici op de arbeidsmarkt zullen melden. De instroom vanuit het opleidings­type HBO-economisch/administratief bedraagt naar schatting 35 700 personen op ongeveer 38 000 vacatures. Hierbij moeten wij bedenken dat er natuurlijk ook nog werklozen ‘boven de markt hangen’.

De hier geschetste discrepantie tussen vraag en aanbod zegt echter alleen iets over de toekomstige marktpositie. Die is belang­rijk voor degenen die nog een aantal jaren studie hebben te gaan. Voor degenen die dit of volgend jaar afstuderen is daarentegen de actuele marktpositie van belang, en die wordt bepaald aan de hand van het aantal openstaande vacatures en het percentage daarvan dat moeilijk vervulbaar is. Dit probleem manifesteert zich niet in voor ingenieurs of mana­gers relevante beroepsklassen, tenzij men technische en medi­sche vertegenwoordigers daartoe rekent.

Voor de actuele marktpositie enquêteert ROA HBO-ers één jaar na hun afstuderen. Met name voor de rich­ting elektro­techniek en in mindere mate ook voor werktuig­bouwkunde is het aantal afgestudeerden dat na een jaar nog geen baan heeft vrij groot, respectievelijk 20 % en 11 %.

Kijken we naar de toekomstige marktpositie, dan ontwikkelt die zich voor technici veel gunstiger dan voor economen en managers. Zo is in de bèta-onderzoeksfeer op universitair niveau tot 2000 welis­waar nog een over­schot aan technische onderzoe­kers, maar er is tevens een groot tekort aan wis- en natuurkundigen. Daarom mag volgens ROA worden verwacht dat technici voorlopig het werk zullen kunnen doen dat beoogd is voor wis- en natuur­kun­digen, aan wie een schreeu­wend tekort dreigt te ontstaan. Hier is sprake van zogenoemde ‘substitutie’. Overigens bedraagt het over­schot bèta-onderzoekers 6 %, en dat is slechts net iets meer dan de ‘normale’ frictiewerk­loosheid. Na 2000 wordt het bèta­onderzoek, volgens de huidige voorspelling, nog louter geplaagd door tekorten aan onderzoekers.

 

Tekort aan technici

De risicopositie van de hogere opleidingen wordt gemeten door de mogelijkheid om een baan uit te oefenen in een ander beroep dan waarin men nu werkt, af te zetten tegen de conjunctuurgevoeligheid van de eigen opleiding. Een hoge beroepen­spreiding wil zeggen dat men vanuit een opleiding gemakkelijk in andere beroepen terecht kan. Een grote conjunctuurgevoeligheid is niet zo erg als de mogelijkheden om uit te wijken naar een ander beroep maar groot zijn. Dat geldt vooral voor de technische HBO-opleidingen. Voor hogere leidingge­venden op het gebied van financiën en verkoop geldt dat zij in dubbel op­zicht een gunstige risicopositie hebben: zij kunnen gemakke­lijk uitwijken, maar hebben ook weinig hinder van economische tegenslag.

Wat zeggen deze uitspraken over de hogere opleidin­gen? Van de totale be­roepsbevolking heeft 22,2 % een hogere of universitaire oplei­ding. Voor de technische opleidingstypen op zowel HBO- als universitair niveau verwacht ROA een redelijk tot goed ar­beidsmarktperspectief, voornamelijk vanwege het grote aantal baanopeningen voor nieuwkomers dat zich naar verwachting tot 1998 zal voordoen.

Op de middellange termijn zal naar verwachting sprake zijn van een tekortschietend aanbod van nieuwkomers op de arbeidsmarkt vanuit het hoger technisch onderwijs.

 

 

 

(FOTOBIJSCHRIFT OPENINGSDIA)

Goede vooruitzichten voor technici op de arbeidsmarkt; naast puur technisch werk zijn zij ook inzetbaar in commerciële en managementfuncties.

(Foto: Océ van der Grinten, Venlo)

 

 

 

 

 

(3 GRAFIEKEN, 3 TABELLEN BIJ HOOFDVERHAAL)

 

(TABEL 1)

 

Opleidingstype met naar verwachting het hoogste aantal baanopeningen

 

 

Opleidingstype aantal    %

 

Absoluut

 

MBO economisch-administratief  147 000   3,9

MBO technisch  125 900   3,4

Mavo en onderbouw havo/vwo     94 100    4,1

VBO technisch  74 300    2,7

Bovenbouw havo/vwo   66 500    4,2

Basisonderwijs 60 900    2,0

VBO verzorgend 58 300    4,9

MBO verzorgend 54 200    4,6

HBO onderwijs  44 300    3,4

MBO verpleging en ziekenverzorging  43 800    4,4

 

 

 

Relatief

 

HBO vervoer    9600 6,2

WO technisch   18 200    6,1

VBO beveiliging en bewaking    1600 5,9

WO econom(etr)ie en bedrijfskunde   15 900    5,9

WO theologisch 2100 5,8

WO kunst  700  5,6

HBO technisch  34 500    5,3

WO wis- en natuurkunde    11 000    5,2

HBO tolk en vertaler 1900 5,2

HBO kunst 9 800     5,2

 

(Bron: ROA, 1993)

 

 

 

(TABEL 2)

 

Ontwikkeling van aantal werkenden per bedrijfstak (gemiddelde jaarlijkse groei)

 

 

Bedrijfstak    1988-1992 1993-1998

%    %

 

Landbouw, visserij en bosbouw  – l,6     – 0,5

Voedings- en genotmiddelenindustrie 0,9  – 0,5

Chemie    1,0  1,4

Metaal, elektrotechnische en transportmiddelenindustrie  1,4- 0,2

Overige industrie    1,0  – 0,1

Energie   – 1,5     0,2

Bouw – 0,3     0,7

Handel    1,8  1,0

Vervoer en communicatie   2,3  0,7

Overige commerciële dienstverlening 3,7  1,2

Kwartaire diensten   2,0  1,9

Openbaar bestuur, politie, defensie en onderwijs   – 0,5     – 0,4

 

Totaal (incl. bedrijfstak onbekend) 1,6  0,7

 

(Bron: ROA, 1993)

 

 

 

(TABEL 3)

 

Ontwikkeling van aantal werkenden per opleidingscategorie (gemiddelde jaarlijkse groei)

 

 

Opleidingscategorie  1990-1992 1993-1998

%    %

 

Basisonderwijs – 4,2     – 2,2

 

Mavo/VBO-niveau

– algemeen/economisch     0,0  – 0,6

– technisch/agrarisch     – 1,0     – 0,5

– verzorgend   – 0,2     – 0,1

 

Middelbaar niveau

– algemeen 8,4  1,0

– technisch/agrarisch     2,2  1,1

– economisch   1,9  0,9

– verzorgend   3,0  1,6

 

Hoger niveau

– technisch/agrarisch     1,0  2,7

– economisch   8,7  2,9

– verzorgend   5,2  1,9

 

Totaal (incl. overige opleidingen en opleiding onbekend0 1,6  0,7

 

(Bron: CBS/ROA, 1993)

 

 

 

 

(LEGENDA GRAFIEK 1)

 

  1. onderwijs: basis- en speciaal onderwijs
  2. onderwijs: voortgezet onderwijs
  3. technisch: laboratorium
  4. technisch: elektrotechniek
  5. technisch: werktuigbouwkunde
  6. technisch: weg- en waterbouwkunde
  7. technisch: bouwkunde, bouwtechnische bedrijfskunde
  8. medisch laboratorium
  9. verpleging en paramedisch: verpleging
  10. verpleging en paramedisch: diëtiek
  11. verpleging en paramedisch: ergotherapie
  12. verpleging en paramedisch: fysiotherapie
  13. verpleging en paramedisch: logopedie
  14. verpleging en paramedisch: creatieve therapie
  15. economisch-administratief: bedrijfseconomie
  16. economisch-administratief: (bedrijfs)informatica
  17. economisch-administratief: commerciële economie
  18. economisch-administratief: economisch-linguïstisch
  19. economisch-administratief: accountancy
  20. technische bedrijfskunde
  21. bestuurlijk
  22. sociaal-cultureel: personeelswerk
  23. sociaal-cultureel: maatschappelijk, inrichtings- en welzijnswerk
  24. sociaal-cultureel: journalistiek, bibliotheek en documentaire informatie
  25. horeca
  26. kunst

 

(Bron: ROA, 1993)

 

 

 

 

 

(KADER)

Werkloosheid onder technici

 

Pas in de tweede helft van de jaren zeventig ontstond onder hoger opgeleiden werkloosheid van enige omvang. Die trof vooral degenen met een opleiding voor de land­bouw en voor beroepen waarin gedrags-, maatschappelijke, taal- of culturele kennis is vereist.

Op 6 december 1993 startte het Leidse onderzoekbureau Research voor Beleid een telefonische enquête die tot 15 januari 1994 duurde. De ge­­­­­nquêteerden kwamen uit het werkzoekendenbestand van het CBA van 15 november 1993. Er werden 16 900 HBO-ers en 16 187 academici geselecteerd.

Een zeer klein gedeelte (3,5 % van de HBO-ers en 4,2 % van de acade­mici) wilde niet meewerken. Ver­vol­gens vielen mensen af doordat ze onbereikbaar waren, terwijl degenen die wèl werden bereik­t niet allemaal aan de criteria bleken te voldoen doordat ze bijvoorbeeld meer dan 12 uur in de week werken. De totale netto steekproef bestond uiteinde­lijk uit 3879 werklozen met een HBO-opleiding en 5287 werk­lozen met een weten­schappelijke opleiding.

Omdat de aanslui­ting ‘op de huidige arbeidsmarkt’ voor de werklozen die heel lang geleden zijn afgestudeerd ‘beleidsmatig niet meer rele­vant is’, wilde de opdrachtgever, het minis­terie van O&W, de grens trekken bij 1978; wie voor die tijd is afge­stu­deerd, doet niet meer mee. Uiteindelijk bleven zo 2782 bruikba­re HBO-werklozen en 4532 werkloze academici over.

Toen bleek dat sommige arbeidsbu­reaus academici onderbren­gen in andere bestandscategorieën dan gebruikelijk en dus ontoerei­kende bestanden hadden aangele­verd, is dit aantal van 4532 ‘gewogen’ en vastgesteld op 4739. De HBO-steekproef was daarbij ver onder de maat, waardoor haar betrouwbaarheid veel kleiner is. Dat komt tot uitdrukking in grotere betrouwbaarheidsmarges bij met name de kleine studie­richtingen in het HBO. De betrouwbaarheidmarge geeft aan waarbinnen het percen­tage met 95 % zekerheid zal liggen.

De berekening gaat als volgt. De 2782 opgespoorde en ondervraagde werkloze HBO-ers worden op 100 % gesteld. Van hen komen 119 uit de HBO-studierichting elektro­tech­niek. Dat is 4,28 % van 2782. Dat percenta­ge zegt nog niets over de mate van of de kans op werkloos­heid. Daarvoor moeten we bepalen hoeveel werken­de én niet-wer­kende ele­ktrotechnici er zijn.

Het totale aantal sinds 1978 afgestudeerde HBO-ers wordt eveneens gesteld op 100 %. Afgestudeerde elektrotechnici maken daar 3,92 % van­uit. Dat is een statistisch gegeven.

Als het percentage elektrotechnici in de steekproef uit het bestand van HBO-werk­lozen even groot is als het percentage elektrotechnici van het totale aantal in het HBO afgestudeerden, dan moet de werkloos­heid in deze studierichting even groot zijn als de gemiddelde werkloos­heid in de HBO-studierichtingen.

We delen het percen­tage werkloze elektrotechnici (4,28) door het percen­tage afge­stu­deerde elektrotechnici (3,92). De uitkomst 1,09 is dan de factor waarmee het werkloosheidspercentage onder elektrotechnici zal afwijken van het gemid­delde van 4,0 % dat geldt in het HBO. Het bedraagt dus 4,4 %.

De factor 1,09 is in dit geval de werkloosheidsindicator per studierichting. Voor de wetenschappelijke studierichtingen wordt de voor elke studierichting gevonden indicator vermenigvuldigd met de voor alle wetenschappelijke studierichtingen gemiddelde werkloos­heid van 5,1 % om de schatting van de werkloosheid per studierich­ting te vinden. De indicatorwaarden en percentages voor de technische studierichtingen staan in de tabel. Tussen haakjes staan de betrouwbaarheidsmarges.

HBO-techniek geeft gemiddeld een kleine kans op werkloosheid. Uitzonderingen daarop zijn elektrotechniek en werktuigbouwkunde. Bijzonder laag is de werkloosheid in de richtingen technische bedrijfskunde, bouwkunde en civiele techniek.

In het weten­schappelijke onderwijs ligt de werkloosheid in de techni­sche, economische en juridische studierichtingen momenteel beneden het gemiddelde, met uitzondering van technische na­tuurkunde en bedrijfskunde, die een hoger dan gemiddeld percen­tage hebben. De hoogste werkloosheid treffen we aan onder afgestudeerden in de theaterwetenschappen (16 %), de laagste werkloosheid onder afgestudeerde tandheelkundigen (0,2 %) met civiele techniek en geodesie (0,9 %) op een gedeelde tweede plaats. Over het algemeen genomen is daar waar de werkloosheid het hoogste is, ook de gemiddelde werkloosheidsduur het hoogst.

Meer dan tweederde van de HBO-ers die nu werkloos zijn, blijkt dit de laatste vijf jaar twee of meer keren te zijn overkomen. Een belangrijke constatering in dit verband is dat perioden van werk en werkloosheid zich afwisselen: de belangrijkste reden voor ontslag is dan ook het ten einde lopen van een tijdelijk contract.

 

 

 

(TABELLEN BIJ KADER)

 

(TABEL 1)

 

Werkloosheidsindicator WO

(werkloosheidspercentages en betrouwbaarheidsmarges naar studierichting)

 

Studierichting indicator (min. – max.)   % werkloosheid (min. – max.)

 

Technische wiskunde  0,53 (0,31 – 0,76)   2,7 (1,6 – 3,9)

Technische informatica    0,69 (0,45 – 0, 93)  3,5 (2,3 – 4,8)

Civiele techniek     0,18 (0,08 – 0,28)   0,9 (0,4 – 1,4)

Bouwkunde 0,52 (0,39 – 0,66)   2,7 (2,0 – 3,4)

Werktuigbouwkunde    0,75 (0,58 – 0,91)   3,8 (3,0 – 4,7)

Elektrotechniek 0,65 (0,50 – 0,79)   3,3 (2,6 – 4,1)

Scheikundige technologie  0,99 (0,77 – 1,21)   5,0 (3,9 – 6,2)

Technische natuurkunde    1,10 (0,84 – 1,36)   5,6 (4,3 – 6,9)

Lucht- en ruimtevaart     0,69 (0,36 – 1,02)   3,5 (1,8 – 5,2)

Industriële vormgeving    0,81 (0,45 – 1,18)   4,2 (2,3 – 6,0)

Marine techniek 0,20 (0,00 – 0,56)   1,0 (0,0 – 2,8)

Geodesie  0,17 (0,00 – 0,48)   0,9 (0,0 – 2,4)

Mijnbouwkunde  0,95 (0,44 – 1,46)   4,9 (2,2 – 7,5)

Overige techniek     0,94 (0,30 – 1,57)   4,8 (1,6 – 8,0)

Vrije Studie Techniek     0,65 (0,00 – 1,82)   3,3 (0,0 – 9,3)

 

(Bron: Research voor Beleid, 1994)

 

 

 

(TABEL 2)

Werkloosheidsindicator HBO

(werkloosheidspercentages en betrouwbaarheidsmarges naar studierichting)

 

Studierichting indicator (min. – max.)   % werkloosheid (min. – max.)

 

Landbouw  0,97 (0,78 – 1,15)   3,9 (3,1 – 4,6)

Technische bedrijfskunde  0,20 (0,03 – 0,38)   0,8 (0,1 – 1,5)

Bouwkunde 0,47 (0,28 – 0,67)   1,9 (1,1 – 2,7)

Elektrotechniek 1,09 (0,91 – 1,27)   4,4 (3,6 – 5,1)

Hogere informatica   0,95 (0,59 – 1,31)   3,8 (2,4 – 5,3)

Civiele techniek     0,26 (0,11 – 0,42)   1,1 (0,4 – 1,7)

Werktuigbouwkunde    0,99 (0,80 – 1,18)   4,0 (3,2 – 4,7)

Nautisch  0,66 (0,40 – 0,92)   2,6 (1,6 – 3,7)

Laboratorium   0,56 (0,44 – 0,69)   2,2 (1,7 – 2,7)

Overig HTO 1,21 (1,01 – 1,41)   4,8 (4,0 – 5,6)

 

(Bron: Research voor Beleid, 1994)